We investigate the complexity of explicit construction problems, where the goal is to produce a particular object of size $n$ possessing some pseudorandom property in time polynomial in $n$. We give overwhelming evidence that ${\bf APEPP}$, defined originally by Kleinberg et al., is the natural complexity class associated with explicit constructions for objects whose existence follows from the probabilistic method, by proving that a host of well-studied explicit construction problems lie in this class. We then observe that a result of Je\v{r}\'{a}bek on provability in Bounded Arithmetic, when reinterpreted as a reduction between search problems, shows that constructing a truth table of high circuit complexity is complete for ${\bf APEPP}$ under ${\bf P}^{\bf NP}$ reductions. This demonstrates that constructing a hard truth table is a universal explicit construction problem in a concrete sense. This result in fact gives a precise algorithmic characterization of proving $2^{\Omega(n)}$ circuit lower bounds for ${\bf E}^{\bf NP}$: the complete problem for ${\bf APEPP}$ has a ${\bf P}^{\bf NP}$ algorithm if and only if such a lower bound holds. Together with our proof that pseudorandom generators can be constructed in ${\bf APEPP}$, this also yields a self-contained and significantly simplified proof of the celebrated result of Impagliazzo and Wigderson that worst-case-hard truth tables can be used to derandomize algorithms (although the conclusion is weaker as our derandomization requires an ${\bf NP}$ oracle). As another corollary of this completeness result, we show that ${\bf E}^{\bf NP}$ contains a language of circuit complexity $2^{\Omega(n)}$ if and only if it contains a language of circuit complexity $\frac{2^n}{3n}$. Finally, for several of the problems shown to lie in ${\bf APEPP}$, we demonstrate direct polynomial time reductions to the explicit construction of hard truth tables.


翻译:我们调查了明确的建筑问题的复杂性, 我们的目标是生成一个大小为$n美元的特殊目标, 拥有某种假冒资产, 以美元计时。 我们给出了压倒性证据, 最初由克莱伯格等人定义的 美元=bf APEP} 美元, 是用于根据概率方法存在的物体的清晰建筑的自然复杂性类别, 证明一大批经过仔细研究的清晰建筑问题存在于这一类中。 然后我们观察到一个最差的算法, 以美元计时, 以美元计时。 当重新解释时, 以美元计时, 美元计时。 当重解时, 以美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 以美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 以美元计时, 用美元计时, 用美元计时, 用美元计时, 用美元计时, 。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
专知会员服务
158+阅读 · 2020年1月16日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
86+阅读 · 2019年10月21日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月20日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员