Federated learning (FL) has attracted tremendous attentions in recent years due to its privacy preserving measures and great potentials in some distributed but privacy-sensitive applications like finance and health. However, high communication overloads for transmitting high-dimensional networks and extra security masks remains a bottleneck of FL. This paper proposes a communication-efficient FL framework with Adaptive Quantized Gradient (AQG) which adaptively adjusts the quantization level based on local gradient's update to fully utilize the heterogeneousness of local data distribution for reducing unnecessary transmissions. Besides, the client dropout issues are taken into account and the Augmented AQG is developed, which could limit the dropout noise with an appropriate amplification mechanism for transmitted gradients. Theoretical analysis and experiment results show that the proposed AQG leads to 25%-50% of additional transmission reduction as compared to existing popular methods including Quantized Gradient Descent (QGD) and Lazily Aggregated Quantized (LAQ) gradient-based method without deteriorating convergence properties. Particularly, experiments with heterogenous data distributions corroborate a more significant transmission reduction compared with independent identical data distributions. Meanwhile, the proposed AQG is robust to a client dropping rate up to 90% empirically, and the Augmented AQG manages to further improve the FL system's communication efficiency with the presence of moderate-scale client dropouts commonly seen in practical FL scenarios.


翻译:近年来,联邦学习(FL)因其隐私保护措施而吸引了巨大的关注,在金融、卫生等一些分布式但对隐私敏感的应用中也具有巨大的潜力,但是,传送高维网络和额外安全面具的通信超负荷,仍然是FL的瓶颈。 本文提出一个通信高效的FL框架,配有适应性量化梯度(AQG),根据当地梯度更新调整量化水平,充分利用当地数据分布的多样化,减少不必要的传输;此外,还考虑到客户辍学问题,并开发了升级AQG,这可能限制高维网络和额外安全面具传输的升级机制,从而限制辍学的噪音。 理论分析和实验结果表明,与现有流行方法相比,AQG(QG)和L(L)梯度(LAQQ)等混合方法相比,AQQ(QQ)和AL(L)等离值数据分发率的实验,与AQ(AG)客户的正常递增率相比,AQ(G)级分发率和AQ(AG)平均递减。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
元学习—Meta Learning的兴起
CVer
4+阅读 · 2019年10月27日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
元学习—Meta Learning的兴起
CVer
4+阅读 · 2019年10月27日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员