Accurate and high-fidelity demonstration data acquisition is a critical bottleneck for deploying robot Imitation Learning (IL) systems, particularly when dealing with heterogeneous robotic platforms. Existing teleoperation systems often fail to guarantee high-precision data collection across diverse types of teleoperation devices. To address this, we developed Open TeleDex, a unified teleoperation framework engineered for demonstration data collection. Open TeleDex specifically tackles the TripleAny challenge, seamlessly supporting any robotic arm, any dexterous hand, and any external input device. Furthermore, we propose a novel hand pose retargeting algorithm that significantly boosts the interoperability of Open TeleDex, enabling robust and accurate compatibility with an even wider spectrum of heterogeneous master and slave equipment. Open TeleDex establishes a foundational, high-quality, and publicly available platform for accelerating both academic research and industry development in complex robotic manipulation and IL.


翻译:精确且高保真的演示数据采集是部署机器人模仿学习系统的关键瓶颈,尤其是在处理异构机器人平台时。现有的遥操作系统通常难以保证跨不同类型遥操作设备的高精度数据收集。为此,我们开发了Open TeleDex,一个专为演示数据收集设计的统一遥操作框架。Open TeleDex专门应对"TripleAny"挑战,无缝支持任何机械臂、任何灵巧手以及任何外部输入设备。此外,我们提出了一种新颖的手部姿态重定向算法,显著提升了Open TeleDex的互操作性,使其能够与更广泛的异构主从设备实现稳健且精确的兼容。Open TeleDex为加速复杂机器人操作和模仿学习领域的学术研究与工业发展,建立了一个基础性的、高质量的、公开可用的平台。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员