Accurate and high-fidelity demonstration data acquisition is a critical bottleneck for deploying robot Imitation Learning (IL) systems, particularly when dealing with heterogeneous robotic platforms. Existing teleoperation systems often fail to guarantee high-precision data collection across diverse types of teleoperation devices. To address this, we developed Open TeleDex, a unified teleoperation framework engineered for demonstration data collection. Open TeleDex specifically tackles the TripleAny challenge, seamlessly supporting any robotic arm, any dexterous hand, and any external input device. Furthermore, we propose a novel hand pose retargeting algorithm that significantly boosts the interoperability of Open TeleDex, enabling robust and accurate compatibility with an even wider spectrum of heterogeneous master and slave equipment. Open TeleDex establishes a foundational, high-quality, and publicly available platform for accelerating both academic research and industry development in complex robotic manipulation and IL.
翻译:精确且高保真的演示数据采集是部署机器人模仿学习系统的关键瓶颈,尤其是在处理异构机器人平台时。现有的遥操作系统通常难以保证跨不同类型遥操作设备的高精度数据收集。为此,我们开发了Open TeleDex,一个专为演示数据收集设计的统一遥操作框架。Open TeleDex专门应对"TripleAny"挑战,无缝支持任何机械臂、任何灵巧手以及任何外部输入设备。此外,我们提出了一种新颖的手部姿态重定向算法,显著提升了Open TeleDex的互操作性,使其能够与更广泛的异构主从设备实现稳健且精确的兼容。Open TeleDex为加速复杂机器人操作和模仿学习领域的学术研究与工业发展,建立了一个基础性的、高质量的、公开可用的平台。