Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.

3
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。

Recently, numerous handcrafted and searched networks have been applied for semantic segmentation. However, previous works intend to handle inputs with various scales in pre-defined static architectures, such as FCN, U-Net, and DeepLab series. This paper studies a conceptually new method to alleviate the scale variance in semantic representation, named dynamic routing. The proposed framework generates data-dependent routes, adapting to the scale distribution of each image. To this end, a differentiable gating function, called soft conditional gate, is proposed to select scale transform paths on the fly. In addition, the computational cost can be further reduced in an end-to-end manner by giving budget constraints to the gating function. We further relax the network level routing space to support multi-path propagations and skip-connections in each forward, bringing substantial network capacity. To demonstrate the superiority of the dynamic property, we compare with several static architectures, which can be modeled as special cases in the routing space. Extensive experiments are conducted on Cityscapes and PASCAL VOC 2012 to illustrate the effectiveness of the dynamic framework. Code is available at https://github.com/yanwei-li/DynamicRouting.

0
5
下载
预览

Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification problems. In this paper, we study NAS for semantic image segmentation, an important computer vision task that assigns a semantic label to every pixel in an image. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Without any ImageNet pretraining, our architecture searched specifically for semantic image segmentation attains state-of-the-art performance.

0
5
下载
预览

In this project, we present ShelfNet, a lightweight convolutional neural network for accurate real-time semantic segmentation. Different from the standard encoder-decoder structure, ShelfNet has multiple encoder-decoder branch pairs with skip connections at each spatial level, which looks like a shelf with multiple columns. The shelf-shaped structure provides multiple paths for information flow and improves segmentation accuracy. Inspired by the success of recurrent convolutional neural networks, we use modified residual blocks where two convolutional layers share weights. The shared-weight block enables efficient feature extraction and model size reduction. We tested ShelfNet with ResNet50 and ResNet101 as the backbone respectively: they achieved 59 FPS and 42 FPS respectively on a GTX 1080Ti GPU with a 512x512 input image. ShelfNet achieved high accuracy: on PASCAL VOC 2012 test set, it achieved 84.2% mIoU with ResNet101 backbone and 82.8% mIoU with ResNet50 backbone; it achieved 75.8% mIoU with ResNet50 backbone on Cityscapes dataset. ShelfNet achieved both higher mIoU and faster inference speed compared with state-of-the-art real-time semantic segmentation models. We provide the implementation https://github.com/juntang-zhuang/ShelfNet.

0
7
下载
预览

Real-time semantic segmentation plays an important role in practical applications such as self-driving and robots. Most research working on semantic segmentation focuses on accuracy with little consideration for efficiency. Several existing studies that emphasize high-speed inference often cannot produce high-accuracy segmentation results. In this paper, we propose a novel convolutional network named Efficient Dense modules with Asymmetric convolution (EDANet), which employs an asymmetric convolution structure incorporating the dilated convolution and the dense connectivity to attain high efficiency at low computational cost, inference time, and model size. Compared to FCN, EDANet is 11 times faster and has 196 times fewer parameters, while it achieves a higher the mean of intersection-over-union (mIoU) score without any additional decoder structure, context module, post-processing scheme, and pretrained model. We evaluate EDANet on Cityscapes and CamVid datasets to evaluate its performance and compare it with the other state-of-art systems. Our network can run on resolution 512x1024 inputs at the speed of 108 and 81 frames per second on a single GTX 1080Ti and Titan X, respectively.

0
8
下载
预览

For the challenging semantic image segmentation task the most efficient models have traditionally combined the structured modelling capabilities of Conditional Random Fields (CRFs) with the feature extraction power of CNNs. In more recent works however, CRF post-processing has fallen out of favour. We argue that this is mainly due to the slow training and inference speeds of CRFs, as well as the difficulty of learning the internal CRF parameters. To overcome both issues we propose to add the assumption of conditional independence to the framework of fully-connected CRFs. This allows us to reformulate the inference in terms of convolutions, which can be implemented highly efficiently on GPUs. Doing so speeds up inference and training by a factor of more then 100. All parameters of the convolutional CRFs can easily be optimized using backpropagation. To facilitating further CRF research we make our implementation publicly available. Please visit: https://github.com/MarvinTeichmann/ConvCRF

0
7
下载
预览

In this paper, we propose an efficient architecture for semantic image segmentation using the depth-to-space (D2S) operation. Our D2S model is comprised of a standard CNN encoder followed by a depth-to-space reordering of the final convolutional feature maps; thus eliminating the decoder portion of traditional encoder-decoder segmentation models and reducing computation time almost by half. As a participant of the DeepGlobe Road Extraction competition, we evaluate our models on the corresponding road segmentation dataset. Our highly efficient D2S models exhibit comparable performance to standard segmentation models with much less computational cost.

0
7
下载
预览

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: https://github.com/holgerroth/3Dunet_abdomen_cascade.

0
10
下载
预览

With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagno- sis, and medical intervention. Since manual anno- tation su ers limited reproducibility, arduous e orts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural networks (DNNs), par- ticularly fully convolutional networks (FCNs), have been widely applied to biomedical image segmenta- tion, attaining much improved performance. At the same time, quantization of DNNs has become an ac- tive research topic, which aims to represent weights with less memory (precision) to considerably reduce memory and computation requirements of DNNs while maintaining acceptable accuracy. In this paper, we apply quantization techniques to FCNs for accurate biomedical image segmentation. Unlike existing litera- ture on quantization which primarily targets memory and computation complexity reduction, we apply quan- tization as a method to reduce over tting in FCNs for better accuracy. Speci cally, we focus on a state-of- the-art segmentation framework, suggestive annotation [22], which judiciously extracts representative annota- tion samples from the original training dataset, obtain- ing an e ective small-sized balanced training dataset. We develop two new quantization processes for this framework: (1) suggestive annotation with quantiza- tion for highly representative training samples, and (2) network training with quantization for high accuracy. Extensive experiments on the MICCAI Gland dataset show that both quantization processes can improve the segmentation performance, and our proposed method exceeds the current state-of-the-art performance by up to 1%. In addition, our method has a reduction of up to 6.4x on memory usage.

0
5
下载
预览

Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on the PASCAL VOC 2012 semantic image segmentation dataset and achieve a performance of 89% on the test set without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow.

0
7
下载
预览

Precise 3D segmentation of infant brain tissues is an essential step towards comprehensive volumetric studies and quantitative analysis of early brain developement. However, computing such segmentations is very challenging, especially for 6-month infant brain, due to the poor image quality, among other difficulties inherent to infant brain MRI, e.g., the isointense contrast between white and gray matter and the severe partial volume effect due to small brain sizes. This study investigates the problem with an ensemble of semi-dense fully convolutional neural networks (CNNs), which employs T1-weighted and T2-weighted MR images as input. We demonstrate that the ensemble agreement is highly correlated with the segmentation errors. Therefore, our method provides measures that can guide local user corrections. To the best of our knowledge, this work is the first ensemble of 3D CNNs for suggesting annotations within images. Furthermore, inspired by the very recent success of dense networks, we propose a novel architecture, SemiDenseNet, which connects all convolutional layers directly to the end of the network. Our architecture allows the efficient propagation of gradients during training, while limiting the number of parameters, requiring one order of magnitude less parameters than popular medical image segmentation networks such as 3D U-Net. Another contribution of our work is the study of the impact that early or late fusions of multiple image modalities might have on the performances of deep architectures. We report evaluations of our method on the public data of the MICCAI iSEG-2017 Challenge on 6-month infant brain MRI segmentation, and show very competitive results among 21 teams, ranking first or second in most metrics.

1
4
下载
预览
小贴士
相关论文
Learning Dynamic Routing for Semantic Segmentation
Yanwei Li,Lin Song,Yukang Chen,Zeming Li,Xiangyu Zhang,Xingang Wang,Jian Sun
5+阅读 · 2020年3月23日
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Chenxi Liu,Liang-Chieh Chen,Florian Schroff,Hartwig Adam,Wei Hua,Alan Yuille,Li Fei-Fei
5+阅读 · 2019年1月10日
Juntang Zhuang,Junlin Yang
7+阅读 · 2018年12月10日
Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation
Shao-Yuan Lo,Hsueh-Ming Hang,Sheng-Wei Chan,Jing-Jhih Lin
8+阅读 · 2018年9月17日
Marvin T. T. Teichmann,Roberto Cipolla
7+阅读 · 2018年5月15日
Shubhra Aich,William van der Kamp,Ian Stavness
7+阅读 · 2018年5月1日
Holger R. Roth,Hirohisa Oda,Xiangrong Zhou,Natsuki Shimizu,Ying Yang,Yuichiro Hayashi,Masahiro Oda,Michitaka Fujiwara,Kazunari Misawa,Kensaku Mori
10+阅读 · 2018年3月20日
Xiaowei Xu,Qing Lu,Yu Hu,Lin Yang,Sharon Hu,Danny Chen,Yiyu Shi
5+阅读 · 2018年3月13日
Liang-Chieh Chen,Yukun Zhu,George Papandreou,Florian Schroff,Hartwig Adam
7+阅读 · 2018年2月7日
Jose Dolz,Christian Desrosiers,Li Wang,Jing Yuan,Dinggang Shen,Ismail Ben Ayed
4+阅读 · 2017年12月19日
相关VIP内容
专知会员服务
92+阅读 · 2020年5月26日
相关资讯
PyTorch语义分割开源库semseg
极市平台
17+阅读 · 2019年6月6日
一文带你读懂 SegNet(语义分割)
AI研习社
8+阅读 · 2019年3月9日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
39+阅读 · 2018年8月30日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
Top