Deep learning researchers have a keen interest in proposing two new novel activation functions which can boost network performance. A good choice of activation function can have significant consequences in improving network performance. A handcrafted activation is the most common choice in neural network models. ReLU is the most common choice in the deep learning community due to its simplicity though ReLU has some serious drawbacks. In this paper, we have proposed a new novel activation function based on approximation of known activation functions like Leaky ReLU, and we call this function Smooth Maximum Unit (SMU). Replacing ReLU by SMU, we have got 6.22% improvement in the CIFAR100 dataset with the ShuffleNet V2 model.
翻译:深层学习研究者非常有兴趣提出两个可以提升网络性能的新的新激活功能。 良好的激活功能选择会在改善网络性能方面产生重大影响。 人工制作的激活是神经网络模型中最常见的选择。 RELU是深层学习社群中最常见的选择, 因为它很简单, 尽管RELU有一些严重的缺点。 在本文中, 我们基于Leaky ReLU等已知激活功能的近似值, 提出了一个新的新型激活功能。 我们称之为此功能的平滑最大单位 。 以 SMU取代 ReLU, 我们用ShuffleNet V2 模型来取代 CIRFAR100 数据集, 我们得到了6. 22%的改进 。