A key challenge to performing effective analyses of high-dimensional data is finding a signal-rich, low-dimensional representation. For linear subspaces, this is generally performed by decomposing a design matrix (via eigenvalue or singular value decomposition) into orthogonal components, and then retaining those components with sufficient variations. This is equivalent to estimating the rank of the matrix and deciding which components to retain is generally carried out using heuristic or ad-hoc approaches such as plotting the decreasing sequence of the eigenvalues and looking for the "elbow" in the plot. While these approaches have been shown to be effective, a poorly calibrated or misjudged elbow location can result in an overabundance of noise or an under-abundance of signal in the low-dimensional representation, making subsequent modeling difficult. In this article, we propose a latent-space-construction procedure to estimate the rank of the detectable signal space of a matrix by retaining components whose variations are significantly greater than random matrices, of which eigenvalues follow a universal March\u{e}nko-Pastur (MP) distribution.


翻译:对高维数据进行有效分析的一个关键挑战是找到一个信号丰富、低维的表达式。对于线性子空间,通常通过将设计矩阵(通过egenvalue或单值分解)分解成正方形元件,然后保留这些元件,使其具有足够的变异性。这相当于估计矩阵的等级,并决定通常使用超光学或反热方法来进行保留哪些元件,例如绘制双元值的递减顺序和在绘图中寻找“ELBow”。虽然这些方法已证明是有效的,但是对肘部位置的校准不当或误判可能导致低维面表示中噪音过多或信号不足,从而使随后的建模变得困难。在本篇文章中,我们提出一个潜在空间建设程序,通过保留其变异性大大大于随机矩阵的元件,其电子元值跟随全美三月\u{nko-Pastur(MP)分布来估计矩阵可探测信号空间的等级。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员