In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

9
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。

To provide a survey on the existing tasks and models in Machine Reading Comprehension (MRC), this report reviews: 1) the dataset collection and performance evaluation of some representative simple-reasoning and complex-reasoning MRC tasks; 2) the architecture designs, attention mechanisms, and performance-boosting approaches for developing neural-network-based MRC models; 3) some recently proposed transfer learning approaches to incorporating text-style knowledge contained in external corpora into the neural networks of MRC models; 4) some recently proposed knowledge base encoding approaches to incorporating graph-style knowledge contained in external knowledge bases into the neural networks of MRC models. Besides, according to what has been achieved and what are still deficient, this report also proposes some open problems for the future research.

0
7
下载
预览

Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets.

0
4
下载
预览

This paper describes a novel hierarchical attention network for reading comprehension style question answering, which aims to answer questions for a given narrative paragraph. In the proposed method, attention and fusion are conducted horizontally and vertically across layers at different levels of granularity between question and paragraph. Specifically, it first encode the question and paragraph with fine-grained language embeddings, to better capture the respective representations at semantic level. Then it proposes a multi-granularity fusion approach to fully fuse information from both global and attended representations. Finally, it introduces a hierarchical attention network to focuses on the answer span progressively with multi-level softalignment. Extensive experiments on the large-scale SQuAD and TriviaQA datasets validate the effectiveness of the proposed method. At the time of writing the paper (Jan. 12th 2018), our model achieves the first position on the SQuAD leaderboard for both single and ensemble models. We also achieves state-of-the-art results on TriviaQA, AddSent and AddOne-Sent datasets.

0
3
下载
预览

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

0
3
下载
预览

Machine reading comprehension with unanswerable questions aims to abstain from answering when no answer can be inferred. In addition to extract answers, previous works usually predict an additional "no-answer" probability to detect unanswerable cases. However, they fail to validate the answerability of the question by verifying the legitimacy of the predicted answer. To address this problem, we propose a novel read-then-verify system, which not only utilizes a neural reader to extract candidate answers and produce no-answer probabilities, but also leverages an answer verifier to decide whether the predicted answer is entailed by the input snippets. Moreover, we introduce two auxiliary losses to help the reader better handle answer extraction as well as no-answer detection, and investigate three different architectures for the answer verifier. Our experiments on the SQuAD 2.0 dataset show that our system achieves a score of 74.2 F1 on the test set, achieving state-of-the-art results at the time of submission (Aug. 28th, 2018).

0
3
下载
预览

Machine reading comprehension (MRC) requires reasoning about both the knowledge involved in a document and knowledge about the world. However, existing datasets are typically dominated by questions that can be well solved by context matching, which fail to test this capability. To encourage the progress on knowledge-based reasoning in MRC, we present knowledge-based MRC in this paper, and build a new dataset consisting of 40,047 question-answer pairs. The annotation of this dataset is designed so that successfully answering the questions requires understanding and the knowledge involved in a document. We implement a framework consisting of both a question answering model and a question generation model, both of which take the knowledge extracted from the document as well as relevant facts from an external knowledge base such as Freebase/ProBase/Reverb/NELL. Results show that incorporating side information from external KB improves the accuracy of the baseline question answer system. We compare it with a standard MRC model BiDAF, and also provide the difficulty of the dataset and lay out remaining challenges.

0
3
下载
预览

Current end-to-end machine reading and question answering (Q\&A) models are primarily based on recurrent neural networks (RNNs) with attention. Despite their success, these models are often slow for both training and inference due to the sequential nature of RNNs. We propose a new Q\&A architecture called QANet, which does not require recurrent networks: Its encoder consists exclusively of convolution and self-attention, where convolution models local interactions and self-attention models global interactions. On the SQuAD dataset, our model is 3x to 13x faster in training and 4x to 9x faster in inference, while achieving equivalent accuracy to recurrent models. The speed-up gain allows us to train the model with much more data. We hence combine our model with data generated by backtranslation from a neural machine translation model. On the SQuAD dataset, our single model, trained with augmented data, achieves 84.6 F1 score on the test set, which is significantly better than the best published F1 score of 81.8.

0
3
下载
预览

A vexing problem in artificial intelligence is reasoning about events that occur in complex, changing visual stimuli such as in video analysis or game play. Inspired by a rich tradition of visual reasoning and memory in cognitive psychology and neuroscience, we developed an artificial, configurable visual question and answer dataset (COG) to parallel experiments in humans and animals. COG is much simpler than the general problem of video analysis, yet it addresses many of the problems relating to visual and logical reasoning and memory -- problems that remain challenging for modern deep learning architectures. We additionally propose a deep learning architecture that performs competitively on other diagnostic VQA datasets (i.e. CLEVR) as well as easy settings of the COG dataset. However, several settings of COG result in datasets that are progressively more challenging to learn. After training, the network can zero-shot generalize to many new tasks. Preliminary analyses of the network architectures trained on COG demonstrate that the network accomplishes the task in a manner interpretable to humans.

0
3
下载
预览

We propose an architecture for VQA which utilizes recurrent layers to generate visual and textual attention. The memory characteristic of the proposed recurrent attention units offers a rich joint embedding of visual and textual features and enables the model to reason relations between several parts of the image and question. Our single model outperforms the first place winner on the VQA 1.0 dataset, performs within margin to the current state-of-the-art ensemble model. We also experiment with replacing attention mechanisms in other state-of-the-art models with our implementation and show increased accuracy. In both cases, our recurrent attention mechanism improves performance in tasks requiring sequential or relational reasoning on the VQA dataset.

0
7
下载
预览

In this paper, we introduce DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, aiming to tackle real-world MRC problems. In comparison to prior datasets, DuReader has the following characteristics: (a) the questions and the documents are all extracted from real application data, and the answers are human generated; (b) it provides rich annotations for question types, especially yes-no and opinion questions, which take a large proportion in real users' questions but have not been well studied before; (c) it provides multiple answers for each question. The first release of DuReader contains 200k questions, 1,000k documents, and 420k answers, which, to the best of our knowledge, is the largest Chinese MRC dataset so far. Experimental results show there exists big gap between the state-of-the-art baseline systems and human performance, which indicates DuReader is a challenging dataset that deserves future study. The dataset and the code of the baseline systems are publicly available now.

0
3
下载
预览
小贴士
相关论文
Yu Cao,Meng Fang,Baosheng Yu,Joey Tianyi Zhou
4+阅读 · 2019年11月13日
Hui Li,Peng Wang,Chunhua Shen,Anton van den Hengel
3+阅读 · 2018年11月29日
Minghao Hu,Furu Wei,Yuxing Peng,Zhen Huang,Nan Yang,Dongsheng Li
3+阅读 · 2018年11月15日
Knowledge Based Machine Reading Comprehension
Yibo Sun,Daya Guo,Duyu Tang,Nan Duan,Zhao Yan,Xiaocheng Feng,Bing Qin
3+阅读 · 2018年9月12日
Adams Wei Yu,David Dohan,Minh-Thang Luong,Rui Zhao,Kai Chen,Mohammad Norouzi,Quoc V. Le
3+阅读 · 2018年4月23日
Guangyu Robert Yang,Igor Ganichev,Xiao-Jing Wang,Jonathon Shlens,David Sussillo
3+阅读 · 2018年3月16日
Ahmed Osman,Wojciech Samek
7+阅读 · 2018年2月1日
Wei He,Kai Liu,Yajuan Lyu,Shiqi Zhao,Xinyan Xiao,Yuan Liu,Yizhong Wang,Hua Wu,Qiaoqiao She,Xuan Liu,Tian Wu,Haifeng Wang
3+阅读 · 2017年11月15日
相关VIP内容
专知会员服务
69+阅读 · 2020年3月18日
专知会员服务
51+阅读 · 2019年12月24日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
14+阅读 · 2019年10月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
6+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
34+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
7+阅读 · 2016年12月7日
Top