Vehicle routing problems (VRPs) form a class of combinatorial problems with wide practical applications. While previous heuristic or learning-based works achieve decent solutions on small problem instances of up to 100 cities, their performance deteriorates in large problems. This article presents a novel learning-augmented local search framework to solve large-scale VRP. The method iteratively improves the solution by identifying appropriate subproblems and $\textit{delegating}$ their improvement to a black box subsolver. At each step, we leverage spatial locality to consider only a linear number of subproblems, rather than exponential. We frame subproblem selection as regression and train a Transformer on a generated training set of problem instances. Our method accelerates state-of-the-art VRP solvers by 10x to 100x while achieving competitive solution qualities for VRPs with sizes ranging from 500 to 3000. Learned subproblem selection offers a 1.5x to 2x speedup over heuristic or random selection. Our results generalize to a variety of VRP distributions, variants, and solvers.
翻译:车辆路由问题( VRPs) 形成一组具有广泛实际应用的组合问题。 虽然先前的超常或基于学习的工程在多达100个城市的小问题案例中取得了体面的解决方案, 但其性能却在大问题上恶化。 文章提出了一个全新的学习强化本地搜索框架, 以解决大型VRP。 这种方法通过找出适当的次级问题和$\ textit{droit} 来迭接改善解决方案, 将其改进为黑盒子溶解器。 每一步, 我们利用空间位置来考虑子问题线性数量, 而不是指数化。 我们把子问题选择作为回归, 并用生成的一组问题案例来训练变异器。 我们的方法将最新的VRP解谜解答器加速了10x至100x, 同时为大小在500至3000之间的VRPs找到竞争性的解决方案质量。 亚问题选择提供了超超超超超高或随机选择的1.5x2x加速度。 我们的结果概括为各种VRP分发、 变式和解答器。