We deal with the problem of semantic classification of challenging and highly-cluttered dataset. We present a novel, and yet a very simple classification technique by leveraging the ease of classifiability of any existing well separable dataset for guidance. Since the guide dataset which may or may not have any semantic relationship with the experimental dataset, forms well separable clusters in the feature set, the proposed network tries to embed class-wise features of the challenging dataset to those distinct clusters of the guide set, making them more separable. Depending on the availability, we propose two types of guide sets: one using texture (image) guides and another using prototype vectors representing cluster centers. Experimental results obtained on the challenging benchmark RSSCN, LSUN, and TU-Berlin datasets establish the efficacy of the proposed method as we outperform the existing state-of-the-art techniques by a considerable margin.
翻译:我们处理具有挑战性和高度分散的数据集的语义分类问题。我们提出了一个新颖的、但非常简单的分类技术,利用任何现有可分类的可分类数据集的易分类性作为指导。由于指南数据集可能与实验数据集具有或可能与实验数据集没有任何语义关系,因此在特征集中形成了非常可分类的组群,拟议网络试图将具有挑战性的数据集的分类特征嵌入指南集的不同组群中,使它们更加易分解。根据可得性,我们提出了两类指南:一类指南使用纹理(模拟)指南,另一类指南使用代表集群中心的原型矢量。在具有挑战性的基准RSSCN、LSUN和TU-Berlin数据集上取得的实验结果确定了拟议方法的功效,因为我们大大超越了现有的最新技术。