We present an efficient proof scheme for any instance of left-to-right modular exponentiation, used in many computational tests for primality. Specifically, we show that for any $(a,n,r,m)$ the correctness of a computation $a^n\equiv r\pmod m$ can be proven and verified with an overhead negligible compared to the computational cost of the exponentiation. Our work generalizes the Gerbicz-Pietrzak proof scheme used when $n$ is a power of $2$, and has been successfully implemented at PrimeGrid, doubling the efficiency of distributed searches for primes.
翻译:我们提出了一个有效的证明方案,用于任何一对二的左对右模块化指数,用于许多初等计算测试。 具体地说,我们证明,对于任何(a,n,r,m)美元,计算美元(a,n,r,m)的正确性可以被证明和核实,与推算成本相比,间接费用微不足道。我们的工作将当美元为2美元时使用的Gerbicz-Pietrzak验证方案概括化,并在PrimeGrid成功实施,使分配的质料搜索效率翻倍。