Natural interaction between multiple users within a shared virtual environment (VE) relies on each other's awareness of the current position of the interaction partners. This, however, cannot be warranted when users employ noncontinuous locomotion techniques, such as teleportation, which may cause confusion among bystanders. In this paper, we pursue two approaches to create a pleasant experience for both the moving user and the bystanders observing that movement. First, we will introduce a Smart Avatar system that delivers continuous full-body human representations for noncontinuous locomotion in shared virtual reality (VR) spaces. Smart Avatars imitate their assigned user's real-world movements when close-by and autonomously navigate to their user when the distance between them exceeds a certain threshold, i.e., after the user teleports. As part of the Smart Avatar system, we implemented four avatar transition techniques and compared them to conventional avatar locomotion in a user study, revealing significant positive effects on the observer's spatial awareness, as well as pragmatic and hedonic quality scores. Second, we introduce the concept of Stuttered Locomotion, which can be applied to any continuous locomotion method. By converting a continuous movement into short-interval teleport steps, we provide the merits of non-continuous locomotion for the moving user while observers can easily keep track of their path. Thus, while the experience for observers is similarly positive as with continuous motion, a user study confirmed that Stuttered Locomotion can significantly reduce the occurrence of cybersickness symptoms for the moving user, making it an attractive choice for shared VEs. We will discuss the potential of Smart Avatars and Stuttered Locomotion for shared VR experiences, both when applied individually and in combination.


翻译:暂无翻译

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员