This work considers the problem of the noisy binary search in a sorted array. The noise is modeled by a parameter $p$ that dictates that a comparison can be incorrect with probability $p$, independently of other queries. We state two types of upper bounds on the number of queries: the worst-case and expected query complexity scenarios. The bounds improve the ones known to date, i.e., our algorithms require fewer queries. Additionally, they have simpler statements, and work for the full range of parameters. All query complexities for the expected query scenarios are tight up to lower order terms. For the problem where the target prior is uniform over all possible inputs, we provide an algorithm with expected complexity upperbounded by $(\log_2 n + \log_2 \delta^{-1} + 3)/I(p)$, where $n$ is the domain size, $0\le p < 1/2$ is the noise ratio, and $\delta>0$ is the failure probability, and $I(p)$ is the information gain function. As a side-effect, we close some correctness issues regarding previous work. Also, en route, we obtain new and improved query complexities for the search generalized to arbitrary graphs. This paper continues and improves the lines of research of Burnashev--Zigangirov [Prob. Per. Informatsii, 1974], Ben-Or and Hassidim [FOCS 2008], Gu and Xu [STOC 2023], and Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et al. [SOSA@SODA 2019].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
17+阅读 · 2021年1月21日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员