In SoCG 2022, Conroy and T\'oth presented several constructions of sparse, low-hop spanners in geometric intersection graphs, including an $O(n\log n)$-size 3-hop spanner for $n$ disks (or fat convex objects) in the plane, and an $O(n\log^2 n)$-size 3-hop spanner for $n$ axis-aligned rectangles in the plane. Their work left open two major questions: (i) can the size be made closer to linear by allowing larger constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection graphs? We address both questions simultaneously, by presenting new constructions of constant-hop spanners that have almost linear size and that hold for a much larger class of intersection graphs. More precisely, we prove the existence of an $O(1)$-hop spanner for arbitrary string graphs with $O(n\alpha_k(n))$ size for any constant $k$, where $\alpha_k(n)$ denotes the $k$-th function in the inverse Ackermann hierarchy. We similarly prove the existence of an $O(1)$-hop spanner for intersection graphs of $d$-dimensional fat objects with $O(n\alpha_k(n))$ size for any constant $k$ and $d$. We also improve on some of Conroy and T\'oth's specific previous results, in either the number of hops or the size: we describe an $O(n\log n)$-size 2-hop spanner for disks (or more generally objects with linear union complexity) in the plane, and an $O(n\log n)$-size 3-hop spanner for axis-aligned rectangles in the plane. Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow cuttings.
翻译:在SoCG 2022中,Conroy 和 T\'oth提出了几种在几何交集图中构造稀疏的低跳数展开图,包括$n$个平面上的圆盘(或高宽比较大的凸对象)的$O(n\log n)$规模的3跳展开图,以及平面上$n$个轴对齐矩形的规模为$O(n\log^2 n)$的3跳展开图。他们的工作留下了两个重要问题:(i)通过允许更大的常数拉伸,规模能否更接近线性?(ii)是否可以在更一般的交集图类别中实现近似线性大小?我们通过提出新的常数跳展开图构造方法,同时回答这两个问题,这些方法几乎具有线性大小,并适用于更大的交集图类别。更准确地说,我们证明了对于任何常数$k$,存在一个$O(1)$跳展开图,适用于具有$O(n\alpha_k(n))$大小的任意字符串图,其中$\alpha_k(n)$表示逆阿克曼层次结构中的第$k$个函数。我们同样证明,在任意常数$k$和$d$下,存在一个$O(1)$跳展开图,适用于具有$O(n\alpha_k(n))$大小的$d$维高宽比较大的对象图。我们还改进了Conroy 和 T\'oth之前的某些特定结果,无论是跳数还是规模:我们描述了$n$个圆盘(或更普遍地说是具有线性并集复杂度的对象)的$O(n\log n)$规模的2跳展开图和平面上轴对齐的矩形的$O(n\log n)$规模的3跳展开图。我们所有证明都很简单,使用了分隔符定理、递归、移动的四叉树和浅剖分。