In cooperative multi-agent reinforcement learning, a collection of agents learns to interact in a shared environment to achieve a common goal. We propose the use of reward machines (RM) -- Mealy machines used as structured representations of reward functions -- to encode the team's task. The proposed novel interpretation of RMs in the multi-agent setting explicitly encodes required teammate interdependencies, allowing the team-level task to be decomposed into sub-tasks for individual agents. We define such a notion of RM decomposition and present algorithmically verifiable conditions guaranteeing that distributed completion of the sub-tasks leads to team behavior accomplishing the original task. This framework for task decomposition provides a natural approach to decentralized learning: agents may learn to accomplish their sub-tasks while observing only their local state and abstracted representations of their teammates. We accordingly propose a decentralized q-learning algorithm. Furthermore, in the case of undiscounted rewards, we use local value functions to derive lower and upper bounds for the global value function corresponding to the team task. Experimental results in three discrete settings exemplify the effectiveness of the proposed RM decomposition approach, which converges to a successful team policy an order of magnitude faster than a centralized learner and significantly outperforms hierarchical and independent q-learning approaches.


翻译:在合作性多剂强化学习中,一批代理商学会在一个共同的环境中互动,以实现一个共同目标。我们提议使用奖赏机器(RM) -- -- 用作有结构的奖赏功能显示结构的机器(Mealy 机器) -- -- 来对团队的任务进行编码。在多试机构设置中拟议对RM的新型解释,明确编码要求团队之间的相互依存关系,使团队一级的任务能够分解成对单个代理商的子任务。我们定义了这样一个RM分解的概念,并提出了在逻辑上可以核查的条件,保证分层任务的分布完成导致团队行为完成最初的任务。这个任务分层化框架为分散学习提供了一种自然的方法:代理商可以学会完成分层任务,同时只观察其当地状况和队友的抽象表现。我们因此建议了分散式的q学习算法。此外,在不计酬的情况下,我们使用本地价值函数来得出与团队任务相应的全球价值函数的较低和上层界限。在三个离散的环境下,实验性结果展示了分散式学习方法的自然方法:代理人可以学会完成分级化,而较快地将一个统一的层次化的顺序排列成一个较快的顺序。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
4+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员