Dynamical systems with a distributed yet interconnected structure, like multi-rigid-body robots or large-scale multi-agent systems, introduce valuable sparsity into the system dynamics that can be exploited in an optimal control setting for speeding up computation and improving numerical conditioning. Conventional approaches for solving the Optimal Control Problem (OCP) rarely capitalize on such structural sparsity, and hence suffer from a cubic computational complexity growth as the dimensionality of the system scales. In this paper, we present an OCP formulation that relies on graphical models to capture the sparsely-interconnected nature of the system dynamics. Such a representational choice allows the use of contemporary graphical inference algorithms that enable our solver to achieve a linear time complexity in the state and control dimensions as well as the time horizon. We demonstrate the numerical and computational advantages of our approach on a canonical dynamical system in simulation.
翻译:具有分布式但互连结构的动态系统,如多硬体机器人或大型多试剂系统,在系统动态中引入了宝贵的宽度,可以在最佳控制环境下用于加速计算和改进数字调节。 解决最佳控制问题的常规方法很少利用这种结构宽度,因此作为系统尺度的维度,会受到立方计算复杂性增长的影响。在本文中,我们提出了一个OCP配方,它依靠图形模型来捕捉系统动态的细小互连性质。这种代表式选择允许使用当代图形推断算法,使我们的求解器能够在状态和控制层面以及时间范围实现线性时间复杂性。我们展示了我们的方法在模拟的金体动态系统中的数值和计算优势。