Recently, Dvo\v{r}\'ak, Norin, and Postle introduced flexibility as an extension of list coloring on graphs [JGT 19']. In this new setting, each vertex $v$ in some subset of $V(G)$ has a request for a certain color $r(v)$ in its list of colors $L(v)$. The goal is to find an $L$ coloring satisfying many, but not necessarily all, of the requests. The main studied question is whether there exists a universal constant $\epsilon >0$ such that any graph $G$ in some graph class $\mathcal{C}$ satisfies at least $\epsilon$ proportion of the requests. More formally, for $k > 0$ the goal is to prove that for any graph $G \in \mathcal{C}$ on vertex set $V$, with any list assignment $L$ of size $k$ for each vertex, and for every $R \subseteq V$ and a request vector $(r(v): v\in R, ~r(v) \in L(v))$, there exists an $L$-coloring of $G$ satisfying at least $\epsilon|R|$ requests. If this is true, then $\mathcal{C}$ is called $\epsilon$-flexible for lists of size $k$. Choi et al. [arXiv 20'] introduced the notion of weak flexibility, where $R = V$. We further develop this direction by introducing a tool to handle weak flexibility. We demonstrate this new tool by showing that for every positive integer $b$ there exists $\epsilon(b)>0$ so that the class of planar graphs without $K_4, C_5 , C_6 , C_7, B_b$ is weakly $\epsilon(b)$-flexible for lists of size $4$ (here $K_n$, $C_n$ and $B_n$ are the complete graph, a cycle, and a book on $n$ vertices, respectively). We also show that the class of planar graphs without $K_4, C_5 , C_6 , C_7, B_5$ is $\epsilon$-flexible for lists of size $4$. The results are tight as these graph classes are not even 3-colorable.


翻译:近期, Dvo\ v{r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\I\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
167+阅读 · 2020年2月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
6+阅读 · 2017年12月7日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年11月3日
Top
微信扫码咨询专知VIP会员