The convex hull of a data set $P$ is the smallest convex set that contains $P$. In this work, we present a new data structure for convex hull, that allows for efficient dynamic updates. In a dynamic convex hull implementation, the following traits are desirable: (1) algorithms for efficiently answering queries as to whether a specified point is inside or outside the hull, (2) adhering to geometric robustness, and (3) algorithmic simplicity.Furthermore, a specific but well-motivated type of two-dimensional data is rank-based data. Here, the input is a set of real-valued numbers $Y$ where for any number $y\in Y$ its rank is its index in $Y$'s sorted order. Each value in $Y$ can be mapped to a point $(rank, value)$ to obtain a two-dimensional point set. In this work, we give an efficient, geometrically robust, dynamic convex hull algorithm, that facilitates queries to whether a point is internal. Furthermore, our construction can be used to efficiently update the convex hull of rank-ordered data, when the real-valued point set is subject to insertions and deletions. Our improved solution is based on an algorithmic simplification of the classical convex hull data structure by Overmars and van Leeuwen~[STOC'80], combined with new algorithmic insights. Our theoretical guarantees on the update time match those of Overmars and van Leeuwen, namely $O(\log^2 |P|)$, while we allow a wider range of functionalities (including rank-based data). Our algorithmic simplification includes simplifying an 11-case check down to a 3-case check that can be written in 20 lines of easily readable C-code. We extend our solution to provide a trade-off between theoretical guarantees and the practical performance of our algorithm. We test and compare our solutions extensively on inputs that were generated randomly or adversarially, including benchmarking datasets from the literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员