We present fully abstract encodings of the call-by-name and call-by-value $\lambda$-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the $\lambda$-calculus side -- normal-form bisimilarity, applicative bisimilarity, and contextual equivalence -- that we internalize into abstract machines in order to prove full abstraction of the encodings. We also demonstrate that this technique scales to the $\lambda\mu$-calculus, i.e., a standard extension of the $\lambda$-calculus with control operators.
翻译:我们向HOcore展示了完全抽象的按名称和按价值拨打的 $\ lambda$- calculs编码,这是一个最低的按级计算的计算过程,没有姓名限制。我们考虑在$\lambda$- calculs 的侧面上,一些等值 -- -- 正常的两种形式,相近的两样和背景等值 -- -- 我们将这些等值内化为抽象的机器,以证明编码完全抽象。我们还证明,这一技术尺度与 $\lambda\ mu$- calculsulus 相比,即控制操作员对 $\lambda$- calculus 的标准扩展值。