As the application of deep neural networks proliferates in numerous areas such as medical imaging, video surveillance, and self driving cars, the need for explaining the decisions of these models has become a hot research topic, both at the global and local level. Locally, most explanation methods have focused on identifying relevance of features, limiting the types of explanations possible. In this paper, we investigate a new direction by leveraging latent features to generate contrastive explanations; predictions are explained not only by highlighting aspects that are in themselves sufficient to justify the classification, but also by new aspects which if added will change the classification. The key contribution of this paper lies in how we add features to rich data in a formal yet humanly interpretable way that leads to meaningful results. Our new definition of "addition" uses latent features to move beyond the limitations of previous explanations and resolve an open question laid out in Dhurandhar, et. al. (2018), which creates local contrastive explanations but is limited to simple datasets such as grayscale images. The strength of our approach in creating intuitive explanations that are also quantitatively superior to other methods is demonstrated on three diverse image datasets (skin lesions, faces, and fashion apparel). A user study with 200 participants further exemplifies the benefits of contrastive information, which can be viewed as complementary to other state-of-the-art interpretability methods.


翻译:由于深心神经网络的应用在医学成像、视频监视和自我驾驶汽车等许多领域扩散,解释这些模型决定的必要性已成为全球和地方两级的热题研究课题。从地方上看,大多数解释方法都侧重于查明特征的相关性,限制解释的可能类型。在本文件中,我们通过利用潜在特征来调查一个新的方向,以产生对比解释;预测的解释不仅通过强调本身足以证明分类理由的方面来解释,而且通过新的方面来解释,如果增加的话,将会改变分类。本文的主要贡献在于我们如何以正式但人文解释的方式增加丰富数据的特点,从而产生有意义的结果。我们新的“添加”定义利用潜在特点,超越了先前解释的局限性,解决了杜兰德哈尔等人(2018年)提出的一个公开问题,它产生地方对比性解释,但仅限于灰度图像等简单数据集。我们在创建直观解释方法方面的力量,这些直观解释在数量上也优于其他方法,从而导致有意义的结果。我们的新定义利用潜在特征,超越了以前解释的局限性,解决了杜兰德哈尔等人(2018年)提出的一个开放问题,可以进一步解释。我们在三种不同图像数据模型的研究中展示的方法中展示了其他用户的优点。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员