In machine learning or statistics, it is often desirable to reduce the dimensionality of a sample of data points in a high dimensional space $\mathbb{R}^d$. This paper introduces a dimensionality reduction method where the embedding coordinates are the eigenvectors of a positive semi-definite kernel obtained as the solution of an infinite dimensional analogue of a semi-definite program. This embedding is adaptive and non-linear. A main feature of our approach is the existence of a non-linear out-of-sample extension formula of the embedding coordinates, called a projected Nystr\"om approximation. This extrapolation formula yields an extension of the kernel matrix to a data-dependent Mercer kernel function. Our empirical results indicate that this embedding method is more robust with respect to the influence of outliers, compared with a spectral embedding method.


翻译:在机器学习或统计中,通常可取的做法是减少高维空间数据点样本的维度 $\mathbb{R ⁇ d$。本文介绍了一个维度减少法,其中嵌入坐标是正半确定性内核的精子,这是作为半确定性程序无限维象的解决方案获得的。这种嵌入是适应性和非线性。我们方法的一个主要特征是存在嵌入坐标的非线外标外扩展公式,称为预测 Nystr\'om 近似值。这一外推公式将内核矩阵延伸至依赖数据的 Mercer内核函数。我们的经验结果表明,与光谱嵌入方法相比,这种嵌入方法在外线的影响方面更为有力。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
Top
微信扫码咨询专知VIP会员