Distributed control systems require high reliability and availability guarantees despite often being deployed at the edge of network infrastructure. Edge computing resources are less secure and less reliable than centralized resources in data centers. Replication and consensus protocols improve robustness to network faults and crashed or corrupted nodes, but these volatile environments can cause non-faulty nodes to temporarily diverge, increasing the time needed for replicas to converge on a consensus value, and give Byzantine attackers too much influence over the convergence process. This paper proposes proximal Byzantine consensus, a new approximate consensus protocol where clients use statistical models of streaming computations to decide a consensus value. In addition, it provides an interval around the decision value and the probability that the true (non-faulty, noise-free) value falls within this interval. Proximal consensus (PC) tolerates unreliable network conditions, Byzantine behavior, and other sources of noise that cause honest replica states to diverge. We evaluate our approach for scalar values, and compare PC simulations against a vector consensus (VC) protocol simulation. Our simulations demonstrate that consensus values selected by PC have lower error and are more robust against Byzantine attacks. We formally characterize the security guarantees against Byzantine attacks and demonstrate attacker influence is bound with high probability. Additionally, an informal complexity analysis suggests PC scales better to higher dimensions than convex hull-based protocols such as VC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年5月15日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年5月15日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2018年1月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员