This paper considers massive Internet of Things systems, especially for LoW Power Wide Area Networks, that aim at connecting billions of low-cost devices with multi-year battery life requirements. Current systems for massive Internet of Things exhibit severe problems when trying to pursue the target of serving a very large number of users. In this paper, a novel asynchronous spread spectrum modulation, called Golden Modulation, is introduced. This modulation provides a vast family of equivalent waveforms with very low cross-interference even in asynchronous conditions, hence enabling natural multiuser operation without the need for inter-user synchronization or for interference cancellation receivers. Thanks to minimal interference between waveforms, coupled with the absence of coordination requirements, this modulation can accommodate very high system capacity. The basic modulation principles, relying on spectrum spreading via direct Zadoff-Chu sequences modulation, are presented and the corresponding theoretical bit error rate performance in an additive white Gaussian noise channel is derived and compared by simulation with realistic Golden Modulation receiver performance. The demodulation of the Golden Modulation is also described, and its performance in the presence of uncoordinated multiple users is characterized.


翻译:本文考虑海量物联网系统,尤其是面向低功耗广域网的系统,旨在连接数以亿计的低成本设备,其电池寿命要求为数年。目前,海量物联网系统存在严重问题,尝试追求为大量用户提供服务的目标时,问题更加严重。本文介绍了一种新型的异步扩频调制,称为Golden Modulation。这种调制提供了大量等效波形,即使在异步条件下也具有极低的互干扰,因此无需互用户同步或干扰取消接收器即可自然地实现多用户操作。由于波形之间的互干扰极小且无需协调需求,因此该调制可以容纳非常高的系统容量。介绍了基本的调制原理,依赖于通过直接的Zadoff-Chu序列调制实现的频谱扩展,并导出了在加性白噪声信道中的理论误码率性能,并通过模拟与实际的Golden Modulation接收器性能进行比较。还描述了对Golden Modulation的解调,以及在未协调多用户的情况下其性能的特征。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
47+阅读 · 2020年8月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
系列教程GNN-algorithms之六:《多核卷积拓扑图—TAGCN》
专知会员服务
47+阅读 · 2020年8月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员