We use a meta-learning neural-network approach to analyse data from a measured quantum state. Once our neural network has been trained it can be used to efficiently sample measurements of the state in measurement bases not contained in the training data. These samples can be used calculate expectation values and other useful quantities. We refer to this process as "state sample tomography". We encode the state's measurement outcome distributions using an efficiently parameterized generative neural network. This allows each stage in the tomography process to be performed efficiently even for large systems. Our scheme is demonstrated on recent IBM Quantum devices, producing a model for a 6-qubit state's measurement outcomes with a predictive accuracy (classical fidelity) > 95% for all test cases using only 100 random measurement settings as opposed to the 729 settings required for standard full tomography using local measurements. This reduction in the required number of measurements scales favourably, with training data in 200 measurement settings yielding a predictive accuracy > 92% for a 10 qubit state where 59,049 settings are typically required for full local measurement-based quantum state tomography. A reduction in number of measurements by a factor, in this case, of almost 600 could allow for estimations of expectation values and state fidelities in practicable times on current quantum devices.


翻译:我们使用元学习神经网络方法分析测量量状态的数据。 一旦我们的神经网络经过培训, 就可以在培训数据中未包含的测量基点中对状态进行高效抽样测量。 这些样本可以用来计算预期值和其他有用数量。 我们称这个过程为“ 状态抽样透视” 。 我们用高效参数化的基因神经网络来编码国家的测量结果分布。 这样可以使断层扫描过程的每个阶段都能高效地进行, 即使是大型系统也是如此。 我们的计划可以在最近的IBM 量子设备上展示, 为所有测试案例生成一个6QBTM测量结果的模型, 且具有预测性准确性( 古典忠诚性) > 95%。 仅使用100个随机测量设置, 而不是使用当地测量标准全层摄影所需的729个设置。 所需测量尺度数量比例的减少是有利的, 200个测量环境中的培训数据可以产生预测性准确度 > 600%。 10个方位状态下的IBM 量度设备显示我们的计划, 典型需要59, 049个环境作为完全基于测量的量度测量的量度测量结果的模型的模型,, 对所有测试的精确度值值的精确度估计值都允许在目前量值的量值中进行量值的量值的量值的量度上减少。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员