To improve the overall performance of processors, computer architects use various performance optimization techniques in modern processors, such as speculative execution, branch prediction, and chaotic execution. Both now and in the future, these optimization techniques are critical for improving the execution speed of processor instructions. However, researchers have discovered that these techniques introduce hidden inherent security flaws, such as meltdown and ghost attacks in recent years. They exploit techniques such as chaotic execution or speculative execution combined with cache-based side-channel attacks to leak protected data. The impact of these vulnerabilities is enormous because they are prevalent in existing or future processors. However, until today, meltdown and ghost have not been effectively addressed, but instead, multiple attack variants and different attack implementations have evolved from them. This paper proposes to optimize four different hardware performance events through feature selection and use machine learning algorithms to build a real-time detection mechanism for Spectre v1,v2,v4, and different implementations of meltdown attacks, ultimately achieving an accuracy rate of over 99\%. In order to verify the practicality of the attack detection model, this paper is tested with a variety of benign programs and different implementations of Spectre attacks different from the modeling process, and the absolute accuracy also exceeds 99\%, showing that this paper can cope with different attack variants and different implementations of the same attack that may occur daily.


翻译:为了提高处理器的总体性能,计算机设计师在现代处理器中使用了各种优化性能的技术,例如投机性执行、分支预测和混乱性执行。现在和将来,这些优化性技术对于提高处理器指示的执行速度至关重要。然而,研究人员发现这些技术带来了隐蔽的内在安全缺陷,例如近年来的熔化和幽灵袭击。他们利用混乱性执行或投机性执行等技术,加上基于缓存的侧道攻击泄漏了受保护的数据。这些弱点的影响是巨大的,因为它们在现有或未来的处理器中普遍存在。然而,直到今天为止,这些弱点和幽灵没有得到有效处理,而是多重攻击变异和不同的攻击执行从它们演变而来。本文提议通过特征选择和机器学习算法优化四种不同的硬件性能事件,以建立Spectre v1,v2,v4的实时检测机制,以及不同的熔化攻击实施方法,最终达到99 ⁇ 的准确率。为了核实攻击探测模型的实用性,本文件经过了各种良性程序测试,并用不同的Spectre攻击执行方法演化了四种不同的Spectre攻击过程, 也显示与这种绝对性攻击的精确度。99的精确性进程。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
44+阅读 · 2019年12月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员