This paper proposes a new test for inequalities that are linear in possibly partially identified nuisance parameters. This type of hypothesis arises in a broad set of problems, including subvector inference for linear unconditional moment (in)equality models, specification testing of such models, and inference for parameters bounded by linear programs. The new test uses a two-step test statistic and a chi-squared critical value with data-dependent degrees of freedom that can be calculated by an elementary formula. Its simple structure and tuning-parameter-free implementation make it attractive for practical use. We establish uniform asymptotic validity of the test, demonstrate its finite-sample size and power in simulations, and illustrate its use in an empirical application that analyzes women's labor supply in response to a welfare policy reform.
翻译:本文提出了一种新的检验方法,用于处理可能部分可识别的干扰参数中呈线性形式的不等式。此类假设广泛出现于多种问题中,包括线性无条件矩(不)等式模型的子向量推断、此类模型的设定检验,以及由线性规划界定的参数推断。新检验采用两步检验统计量,并结合具有数据依赖自由度的卡方临界值,该自由度可通过基本公式计算得出。其简洁的结构与无需调参的实现方式使其在实际应用中具有吸引力。我们证明了该检验的一致渐近有效性,通过模拟展示了其有限样本下的检验水平与功效,并在分析女性劳动力供给对福利政策改革响应的实证应用中进行了示例说明。