Wireless Sensor Networks forms the backbone of modern cyber physical systems used in various applications such as environmental monitoring, healthcare monitoring, industrial automation, and smart infrastructure. Ensuring the reliability of data collected through these networks is essential as these data may contain anomalies due to many reasons such as sensor faults, environmental disturbances, or malicious intrusions. In this paper a lightweight and interpretable anomaly detection framework based on a first order Markov chain model has been proposed. The method discretizes continuous sensor readings into finite states and models the temporal dynamics of sensor transitions through a transition probability matrix. Anomalies are detected when observed transitions occur with probabilities below a computed threshold, allowing for real time detection without labeled data or intensive computation. The proposed framework was validated using the Intel Berkeley Research Lab dataset, as a case study on indoor environmental monitoring demonstrates its capability to identify thermal spikes, voltage related faults, and irregular temperature fluctuations with high precision. Comparative analysis with Z score, Hidden Markov Model, and Auto encoder based methods shows that the proposed Markov based framework achieves a balanced trade-off between accuracy, F1 score is 0.86, interoperability, and computational efficiency. The systems scalability and low resource footprint highlight its suitability for large-scale and real time anomaly detection in WSN deployments.


翻译:无线传感器网络构成了现代信息物理系统的核心,广泛应用于环境监测、医疗健康监测、工业自动化及智能基础设施等领域。确保通过这些网络采集的数据可靠性至关重要,因为这些数据可能因传感器故障、环境干扰或恶意入侵等多种原因包含异常。本文提出了一种基于一阶马尔可夫链模型的轻量级且可解释的异常检测框架。该方法将连续传感器读数离散化为有限状态,并通过转移概率矩阵建模传感器状态转移的时间动态特性。当观测到的转移概率低于计算阈值时,系统即检测到异常,从而无需标注数据或复杂计算即可实现实时检测。所提框架采用英特尔伯克利研究实验室数据集进行验证,以室内环境监测为案例研究,展示了其高精度识别热峰值、电压相关故障及不规则温度波动的能力。与Z分数法、隐马尔可夫模型及自编码器方法的对比分析表明,基于马尔可夫的框架在准确率(F1分数达0.86)、可解释性与计算效率之间取得了均衡。该系统的可扩展性及低资源占用特性,凸显了其在大规模无线传感器网络部署中实现实时异常检测的适用性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年5月15日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员