在Python中获得操作、处理、清理和处理数据集的完整说明。本实用指南的第二版针对Python 3.6进行了更新,其中包含了大量的实际案例研究,向您展示了如何有效地解决广泛的数据分析问题。在这个过程中,您将学习最新版本的panda、NumPy、IPython和Jupyter。

本书由Python panda项目的创建者Wes McKinney编写,是对Python中的数据科学工具的实用的、现代的介绍。对于刚接触Python的分析人员和刚接触数据科学和科学计算的Python程序员来说,它是理想的。数据文件和相关材料可以在GitHub上找到。

  • 使用IPython外壳和Jupyter笔记本进行探索性计算
  • 学习NumPy (Numerical Python)中的基本和高级特性
  • 开始使用pandas库的数据分析工具
  • 使用灵活的工具来加载、清理、转换、合并和重塑数据
  • 使用matplotlib创建信息可视化
  • 应用panda groupby工具对数据集进行切片、切割和汇总
  • 分析和处理有规律和不规则的时间序列数据
  • 学习如何解决现实世界的数据分析问题与彻底的,详细的例子
成为VIP会员查看完整内容
0
87

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

通过这个紧凑的实用指南,开始使用Python进行数据分析。这本书包括三个练习和一个用正确的格式从Python代码中获取数据的案例研究。使用Python学习数据分析还可以帮助您使用分析发现数据中的意义,并展示如何可视化数据。

每一节课都尽可能是独立的,允许您根据需要插入和退出示例。如果您已经在使用Python进行数据分析,那么您会发现您希望知道如何使用Python来完成许多事情。然后,您可以将这些技术直接应用到您自己的项目中。

如果您不使用Python进行数据分析,那么本书从一开始就带您了解基础知识,为您在该主题中打下坚实的基础。当你阅读完这本书的时候,你会对如何使用Python进行数据分析有更好的理解。

你将学到什么

  • 从Python代码中获取数据
  • 准备数据及其格式
  • 找出数据的意义
  • 使用iPython可视化数据

这本书是给谁的

想学习使用Python进行数据分析的同学。建议您具有Python方面的经验,但不是必需的,因为您需要具有数据分析或数据科学方面的经验。

成为VIP会员查看完整内容
0
92

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
73

《R之书》是一本全面的入门指南,介绍了世界上最流行的统计分析编程语言R。即使你没有编程经验,只具备一些基本的数学基础,你也会发现开始有效地使用R进行统计分析所需要的一切。

您将从基础知识开始,比如如何处理数据和编写简单的程序,然后再转向更高级的主题,比如生成数据的统计摘要以及执行统计测试和建模。您还将学习如何使用R的基本图形工具和贡献的包(如ggplot2和ggvis)创建令人印象深刻的数据可视化,以及使用rgl包创建交互式3D可视化。

几十个动手练习(可下载的解决方案)带你从理论到实践,你学习:

  • R语言编程的基础,包括如何编写数据帧、创建函数、使用变量、语句和循环
  • 统计概念,如探索性数据分析,概率,假设检验,回归建模,以及如何在R中执行它们
  • 如何访问R的数千个函数、库和数据集
  • 如何从数据中得出有效和有用的结论
  • 如何创建发布质量图形的结果

结合实际例子和练习的详细解释,这本书将为您提供一个坚实的统计和R的功能的深度理解。让R这本书成为你进入日益增长的数据分析世界的大门。

成为VIP会员查看完整内容
0
48

Python是一种多范式编程语言,已经成为数据科学家进行数据分析、可视化和机器学习的首选语言。有没有想过如何成为有效处理数据分析问题的专家,解决这些问题,并从数据中提取所有可用信息?好了,别再找了,这就是你要的书!

通过这个全面的指南,您将探索数据,并以一种有意义的方式展示统计分析的结果和结论。您将能够快速准确地执行实际操作的排序、缩减和后续分析,并充分理解数据分析方法如何支持业务决策。

您将首先了解Python中可用的数据分析工具,然后探索用于识别数据模式的统计模型。渐渐地,您将使用Python、panda和SciPy回顾统计推断。在此之后,我们将集中于使用计算工具执行回归,您将了解如何用算法的方式识别数据中的集群。最后,我们将深入探讨使用贝叶斯方法量化因果关系的高级技术,您将发现如何使用Python的工具进行监督机器学习。

你会学到什么

  • 将各种数据读入、排序并映射到Python和panda中
  • 识别模式,以便理解和研究数据
  • 使用统计模型来发现数据中的模式
  • 回顾使用Python、panda和SciPy的经典统计推断
  • 使用聚类检测数据中的相似性和差异性
  • 清理数据,使其有用
  • 在Jupyter笔记本生产出版准备工作数据纳入
成为VIP会员查看完整内容
0
60

贝叶斯数据分析第三版,这本经典的书被广泛认为是关于贝叶斯方法的主要著作,用实用的方法来分析数据和解决研究问题。贝叶斯数据分析,第三版继续采取一种实用的方法来分析使用最新的贝叶斯方法。作者——统计界权威——在介绍高级方法之前,先从数据分析的角度介绍基本概念。在整个文本中,大量的工作示例来自实际应用和研究,强调在实践中使用贝叶斯推理。

第三版新增

  • 非参数建模的四个新章节
  • 覆盖信息不足的先验和边界回避的先验
  • 关于交叉验证和预测信息标准的最新讨论
  • 改进的收敛性监测和有效的样本容量计算迭代模拟
  • 介绍了哈密顿的蒙特卡罗、变分贝叶斯和期望传播
  • 新的和修改的软件代码

这本书有三种不同的用法。对于本科生,它介绍了从第一原则开始的贝叶斯推理。针对研究生,本文提出了有效的方法,目前贝叶斯建模和计算的统计和相关领域。对于研究人员来说,它提供了应用统计学中的各种贝叶斯方法。其他的资料,包括例子中使用的数据集,所选练习的解决方案,以及软件说明,都可以在本书的网页上找到。

贝叶斯数据分析课程

https://avehtari.github.io/BDA_course_Aalto/index.html

成为VIP会员查看完整内容
0
132

Python算法,第二版解释了Python方法的算法分析和设计。本书由《初级Python》的作者Magnus Lie Hetland撰写,主要关注经典算法,但也对基本的算法解决问题技术有了深入的理解。

这本书涉及一些最重要和最具挑战性的领域的编程和计算机科学在一个高度可读的方式。它涵盖了算法理论和编程实践,演示了理论是如何反映在真实的Python程序中的。介绍了Python语言中内置的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构

成为VIP会员查看完整内容
0
109

数据结构和算法的更新、创新方法

这个权威的指南由其领域的专家组成的作者团队编写,它甚至解释了最困难的数学概念,这样您就可以清楚地理解c++中的数据结构和算法。

权威的作者团队采用面向对象的设计范式,使用c++作为实现语言,同时还提供基本算法的直觉和分析。

  • 提供一种独特的多媒体格式,学习基本的数据结构和算法
  • 允许您可视化关键的分析概念,了解该领域的最新见解,并进行数据结构设计
  • 为开发程序提供清晰的方法
  • 具有清晰,易于理解的写作风格,打破了即使是最困难的数学概念

成为VIP会员查看完整内容
0
89

创建健壮的软件需要使用高效的算法,但是程序员在问题出现之前很少考虑这些算法。这个更新版的算法简而言之描述了大量现有的算法,用于解决各种各样的问题,并帮助您选择和实现适合您需要的正确算法—只需足够的数学知识就可以让您理解和分析算法的性能。

本书的重点是应用,而不是理论,它提供了几种编程语言的高效代码解决方案,您可以轻松地适应特定的项目。每个主要算法都以设计模式的形式呈现,其中包含帮助您理解为什么以及何时使用该算法的信息。

有了这本书,你将: 解决特定的编码问题或改进现有解决方案的性能 快速定位与您想要解决的问题相关的算法,并确定为什么使用特定的算法是正确的 通过实现技巧获得C、c++、Java和Ruby中的算法解决方案 了解一个算法的预期性能,以及它需要在最佳状态下执行的条件 发现相似的设计决策对不同算法的影响 学习先进的数据结构,提高算法的效率

成为VIP会员查看完整内容
0
90

主题: Python Data Science Cookbook

简介: 这本书包含了简单而简洁的Python代码示例,以有效地演示实际中的高级概念,使用Python探索编程、数据挖掘、数据分析、数据可视化和机器学习等概念,借助简单易懂、有见地的方法,快速掌握机器学习算法。

成为VIP会员查看完整内容
0
87
小贴士
相关VIP内容
相关资讯
吐血整理!140种Python标准库、第三方库和外部工具都有了
炼数成金订阅号
8+阅读 · 2019年7月30日
这可能是学习Python最好的免费在线电子书
程序猿
34+阅读 · 2018年5月17日
荐书丨Python数据分析从入门到精通
程序人生
7+阅读 · 2018年3月31日
Python数据科学超强阵容书单
图灵教育
6+阅读 · 2018年3月26日
【入门】数据分析六部曲
36大数据
8+阅读 · 2017年12月6日
一位数据分析师的书单
R语言中文社区
7+阅读 · 2017年10月28日
Python 书单:从入门到……
Linux中国
11+阅读 · 2017年8月6日
相关论文
Mining Disinformation and Fake News: Concepts, Methods, and Recent Advancements
Kai Shu,Suhang Wang,Dongwon Lee,Huan Liu
7+阅读 · 2020年1月2日
Optimization for deep learning: theory and algorithms
Ruoyu Sun
76+阅读 · 2019年12月19日
Sicheng Zhao,Shangfei Wang,Mohammad Soleymani,Dhiraj Joshi,Qiang Ji
7+阅读 · 2019年10月3日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
8+阅读 · 2019年3月10日
Ziwei Zhang,Peng Cui,Wenwu Zhu
37+阅读 · 2018年12月11日
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
7+阅读 · 2018年9月25日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
Fahim Irfan Alam,Jun Zhou,Alan Wee-Chung Liew,Xiuping Jia,Jocelyn Chanussot,Yongsheng Gao
10+阅读 · 2017年12月27日
Top