教程题目

知识图主要思想简史教程:A Brief History of Knowledge Graph's Main Ideas: A tutorial

教程内容

知识图谱可以被认为是实现了计算机科学早期的愿景,即创建大规模集成知识和数据的智能系统。“知识图”一词是在本世纪初由研究人员提出的,自2012年谷歌推广以来,在学术界和业界迅速流行起来。必须指出的是,无论“知识图”一词的讨论和定义如何,它都源于语义网、数据库、知识表示和推理、自然语言处理、机器学习等不同研究领域的科学进步。来自这些不同学科的思想和技术的集成使知识图的概念更加丰富,但同时也给实践者和研究者提出了一个挑战,使他们知道当前的进步是如何从早期技术发展而来的,并植根于早期技术。

教程作者

Claudio Gutierrez ,Juan F. Sequeda,来自于智利国立大学。

成为VIP会员查看完整内容
A Brief History of Knowledge Graph's Main Ideas.pdf
0
40

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

知识图谱以图的方式承载着结构化的人类知识。作为将知识整合进入人工智能系统的媒介, 知识图谱的研究日益流行。知识图谱在众多人工智能相关的应用上崭露头角, 例如问答系统、 信息检索、 自然语言处理、 推荐系统等。然而, 传统的深度学习不能很好地处理知识图谱这类非欧式数据。随着图神经网络的快速发展, 几何深度学习成为建模非欧式数据的重要理论。 本文以几何深度学习的视角, 以图神经网络为重点, 总结了近期基于图神经网络的知识图谱关键技术研究进展。具体地, 本文总结了知识图谱中知识获取、 知识表示、 知识推理这三个较为核心的研究领域, 并展望了未来的研究方向和前景, 探讨知识图谱在航空航天军事上的潜在应用。

http://www.aeroweaponry.avic.com/CN/abstract/abstract10635.shtml

成为VIP会员查看完整内容
0
23

【导读】知识图谱一直是学术界和工业界关注的焦点。之前专知报道了AAAI2020相关接受论文。最近Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu等学者发表了关于知识图谱的最新综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》,25页pdf涵盖107篇参考文献,对知识图谱进行了全面的综述,涵盖了知识图谱表示学习、知识获取与补全、时序知识图谱、知识感知应用等方面的研究课题,并总结了最近的突破和未来的研究方向。我们提出对这些主题进行全视角分类和新的分类法。是关于知识图谱最近非常重要的参考文献。

摘要

人类知识提供了对世界的认知理解。表征实体间结构关系的知识图谱已经成为认知和人类智能研究的一个日益流行的方向。在本次综述论文中,我们对知识图谱进行了全面的综述,涵盖了知识图谱表示学习、知识获取与补全、时序知识图谱、知识感知应用等方面的研究课题,并总结了最近的突破和未来的研究方向。我们提出对这些主题进行全视角分类和新的分类法。知识图谱嵌入从表示空间、得分函数、编码模型和辅助信息四个方面进行组织。对知识获取,特别是知识图谱的补全、嵌入方法、路径推理和逻辑规则推理进行了综述。我们进一步探讨了几个新兴的主题,包括元关系学习、常识推理和时序知识图谱。为了方便未来对知识图的研究,我们还提供了不同任务的数据集和开源库的集合。最后,我们对几个有前景的研究方向进行了深入的展望。

1. 引言

融合人类知识是人工智能的研究方向之一。知识表示与推理是受人类解决问题方式的启发,为智能系统表示知识以获得解决复杂任务的能力。近年来,知识图谱作为结构化人类知识的一种形式,受到了学术界和产业界的广泛关注。知识图谱是事实的结构化表示,由实体、关系和语义描述组成。实体可以是现实世界的对象和抽象概念,关系表示实体之间的关联,实体及其关系的语义描述包含定义良好的类型和属性。属性图或性质图被广泛使用,其中节点和关系具有属性或性质。

知识图谱与知识库是同义的,只是略有不同。当考虑知识图谱的图结构时,知识图谱可以看作是一个图。当它涉及到形式语义时,它可以作为解释和推断事实的知识库。知识库实例和知识图谱如图1所示。知识可以用事实的三元组形式来表达(头实体,关系,尾实体)或者(主语,谓语,宾语)(head, relation,tail)或 (subject, predicate,object)

例如(Albert Einstein; WinnerOf; Nobel Prize). 它也可以表示为一个有向图,其中节点是实体,边是关系。为了简化和顺应研究领域的发展趋势,本文将知识图谱和知识库这两个术语互换使用。

图1 知识库和知识图谱示例

近年来,基于知识图谱的研究主要集中在知识表示学习(KRL)和知识图谱嵌入(KGE)两个方面。具体的知识获取任务包括知识图谱补全(KGC)、三元组分类、实体识别和关系提取。知识感知模型得益于异构信息、丰富的知识表示本体和语义以及多语言知识的集成。因此,许多现实世界的应用,如推荐系统和问题回答已经具备常识性的理解和推理能力。一些现实世界的产品,例如微软的Satori和谷歌的Knowledge Graph,已经显示出提供更高效服务的强大能力。

为了对现有的文献进行全面的综述,本文重点研究了知识表示,它为知识获取和知识感知应用提供了更加上下文化、智能化和语义化的知识表示方法。我们的主要贡献总结如下:

  • 全面性综述。我们对知识图谱的起源和现代知识图谱的关系学习技术进行了全面的综述。介绍和比较了知识图谱表示、学习和推理的主要神经网络结构。此外,我们还提供了不同领域中许多应用的完整概述。

  • 全视图分类和新的分类法。对知识图谱的研究进行了全面的分类,并提出了精细的分类方法。具体来说,在高层次上,我们从KRL、知识获取和知识感知应用三个方面对知识图谱进行了回顾。对于KRL方法,我们进一步将细粒度分类法分为四个视图,包括表示空间、评分函数、编码模型和辅助信息。在知识获取方面,将知识获取分为基于嵌入的排序、关系路径推理、逻辑规则推理和元关系学习; 实体关系获取任务分为实体识别、类型识别、消歧和对齐; 并根据神经范式对关系抽取进行了讨论。

  • 对新进展的广泛综述。知识图谱经历了快速的发展。本论文提供了广泛的新兴主题,包括基于transformer的知识编码、基于图神经网络(GNN)的知识传播、基于路径推理的强化学习和元关系学习。

  • 总结并展望未来的发展方向。这项综述对每个类别进行了总结,并强调了有前途的未来研究方向。

该综述的其余部分组织如下: 首先,知识图谱的概述,包括历史、符号、定义和分类,在第2节中给出; 然后,我们在第三节从四个范围讨论KRL; 接下来,我们将回顾第4节和第5节中知识获取和时间知识图谱的任务;下游应用介绍在第6节; 最后,讨论了未来的研究方向,并得出结论。其他信息,包括KRL模型训练和一组知识图谱数据集以及开源实现,可以在附录中找到。

2 概述

2.1 知识库简史

知识表示在逻辑和人工智能领域经历了漫长的发展历史。图形化知识表示的思想最早可以追溯到1956年Richens[127]提出的语义网概念,而符号逻辑知识可以追溯到1959年的一般问题求解者[109]。知识库首先用于基于知识的推理和问题解决系统。MYCIN[138]是最著名的基于规则的医学诊断专家系统之一,知识库约有600条规则。后来,人类知识表示的社区看到了基于框架的语言、基于规则的表示和混合表示的发展。大约在这个时期的末期,Cyc项目开始了,目的是收集人类的知识。资源描述框架(RDF)和Web本体语言(OWL)相继发布,成为语义Web的重要标准。然后,许多开放知识库或本体被发布,如WordNet、DBpedia、YAGO和Freebase。Stokman和Vries[140]在1988年的图表中提出了结构知识的现代概念。然而,自2012年谷歌搜索引擎首次提出知识图谱概念以来,知识图谱得到了极大的普及,当时提出了知识库[33]的知识融合框架来构建大规模的知识图谱。附录A说明了知识库历史的简要路线图。

图2: 知识库简史

2.2 定义和符号

大多数现有工作都是通过描述一般的语义表示或基本特征来给出定义。然而,还没有这样被广泛接受的正式定义。Paulheim[117]定义了知识图谱的四个标准。Ehrlinger和Woß[35]分析了现有的一些定义并提出定义1强调知识图谱的推理引擎。Wang等[158]在定义2中提出了多关系图的定义。根据之前的文献,我们将知识图谱定义为G={E,R,F},其中E、R和F分别是实体、关系和事实的集合。一个事实记作一个三元组A triple (h,r,t)∈F。

定义1 (Ehrlinger和Woß[35])。知识图谱获取信息并将其集成到本体中,应用推理引擎获得新知识。

定义2 (Wang et al.[158])。知识图谱是由实体和关系构成的多关系图,实体和关系分别被视为节点和不同类型的边。

表一 列出了具体的符号表示及其描述。附录B解释了几种数学运算的细节。

2.3 知识图研究的分类

本综述对知识图谱的研究,即KRL、知识获取、下游知识感知应用等方面进行了全面的文献综述,整合了许多最新的先进深度学习技术。研究的总体分类如图2所示。

图2: 知识图谱研究的分类

知识表示学习(Knowledge Representation Learning,KRL)是知识图谱的一个重要研究课题,它为许多知识获取任务和后续应用奠定了基础。我们将KRL分为表示空间、评分函数、编码模型和辅助信息四个方面,为开发KRL模型提供了清晰的工作流程。具体的内容包括:

  • 关系和实体所表示的表示空间;
  • 度量事实三元组似然性的评分函数
  • 用于表示和学习关系交互的编码模型;
  • 嵌入方法所集成的辅助信息。

表示学习包括点向空间、流形、复向量空间、高斯分布和离散空间。评分指标一般分为基于距离的评分函数和基于相似度匹配的评分函数。目前的研究集中在编码模型,包括线性/双线性模型,因式分解和神经网络。辅助信息包括文本信息、视觉信息和类型信息。

知识获取任务分为三类:关系提取和实体发现。第一个用于扩展现有的知识图谱,而其他两个用于从文本中发现新知识(即关系和实体)。KGC分为以下几类: 基于嵌入的排序、关系路径推理、基于规则的推理和元关系学习。实体发现包括识别、消歧、类型化和对齐。关系提取模型利用了注意力机制、图卷积网络、对抗性训练、强化学习、深度残差学习和迁移学习。

时序知识图谱包含了表示学习的时态信息。本研究将时间嵌入、实体动态、时序关系依赖、时序逻辑推理四个研究领域进行了分类。

知识感知应用包括自然语言理解(NLU)、问题回答、推荐系统和各种真实世界的任务,这些应用程序注入知识以改进表示学习。

2.4 相关综述论文

以往关于知识图谱的综述论文主要集中在统计相关学习[112]、知识图谱精细化[117]、中文知识图谱构建[166]、KGE[158]或KRL[87]。后两项综述与我们的工作关系更大。Lin等[87]以线性的方式提出KRL,着重于定量分析。Wang等人[158]根据评分函数对KRL进行分类,并特别关注KRL中使用的信息类型。它仅从评分度量的角度提供了当前研究的一般视角。我们的综述深入到KRL,并提供了一个完整的视图,它来自四个方面,包括表示空间、评分函数、编码模型和辅助信息。此外,本文还对知识获取和知识感知应用进行了全面的综述,讨论了基于知识图谱的推理和小样本学习等几个新兴的主题。

3 知识表示学习

KRL在文献中也被称为KGE、多关系学习和统计关系学习。本节介绍在分布式表示学习丰富的语义信息的实体和关系形成4个范围的最新进展,包括表示空间(表示实体和关系,3.1节), 得分函数(度量事实的合理性,3.2节),编码模型(模型的语义交互事实,3.3节),和辅助信息(利用外部信息,3.4节)。我们还在第3.5节中提供了一个摘要。KRL模型的训练策略在附录D中进行了回顾。

3.1 表示空间

表示学习的关键是学习低维分布式嵌入的实体和关系。现有文献主要使用实值点向空间(图2(a)),包括向量空间、矩阵空间和张量空间,其他类型的空间如复向量空间(图2(b))、高斯空间(图2(c))、流形空间(图2(d))也被利用。

图3: 不同空间的知识表示示意图

3.2 评分函数

评分函数用于度量事实的可信度,在基于能量的学习框架中也称为能量函数。能量学习的目的是学习能量函数。基于能量的学习目标学习能量函数Eθ(x)参数化θ采取x作为输入,以确保正样本分数高于负样本。本文采用评分函数的形式进行统一。评分函数有两种典型类型,即基于距离的(图3(a))和基于相似性的(图3(b))函数,用于度量事实的合理性。基于距离的评分函数通过计算实体之间的距离来衡量事实的合理度,其中使用较多的是关系为h+r≈t的翻译函数。基于语义相似度的评分方法是通过语义匹配来衡量事实的合理性,通常采用乘法公式,即h⊤Mr≈t⊤,转换头尾部附近的实体表示空间。

图4: 以TransE[10]和DistMult[185]为例的基于距离和基于相似匹配的评分函数示意图。

3.3 编码模型

本节介绍通过特定的模型体系结构(包括线性/双线性模型、因子分解模型和神经网络)对实体和关系的交互进行编码的模型。线性模型通过将头部实体投射到接近尾部实体的表示空间中,将关系表示为线性/双线性映射。因子分解的目的是将关系数据分解为低秩矩阵进行表示学习。神经网络用非线性神经激活和更复杂的网络结构来编码关系数据。几个神经模型如图5所示。

图5: 神经编码模型示意图。(a) MLP[33]和(b) CNN[110]将三元组数据输入到稠密层和卷积运算中学习语义表示,(c) GCN[132]作为知识图谱的编码器,产生实体和关系嵌入。(d) RSN[50]对实体关系序列进行编码,有区别地跳跃关系。

3.4 嵌入辅助信息

为了促进更有效的知识表示,多模态嵌入将诸如文本描述、类型约束、关系路径和视觉信息等外部信息与知识图谱本身结合起来。

3.5 总结

知识表示学习是知识图谱研究领域的一个重要课题。本节回顾了KRL的四方面,其中最近的几种方法总结在表II中,更多的方法在附录c中。总的来说,开发一个新的KRL模型是为了回答以下四个问题:1)选择哪个表示空间; 2)如何测量特定空间中三元组的合理度; 3)采用何种编码模型对关系交互进行建模; 4)是否利用辅助信息。

最常用的表示空间是基于欧几里德点的空间,它通过在向量空间中嵌入实体,并通过向量、矩阵或张量对相互作用进行建模。研究了复向量空间、高斯分布、流形空间和群等表示空间。流形空间相对于点向欧几里德空间的优点是松弛点向嵌入。高斯嵌入能够表达实体和关系的不确定性,以及多重关系语义。在复杂向量空间中嵌入可以有效地建模不同的关系连接模式,特别是对称/反对称模式。表示空间在实体语义信息的编码和关系属性的获取中起着重要的作用。在建立表示学习模型时,应仔细选择和设计合适的表示空间,以匹配编码方法的性质,平衡表达性和计算复杂度。基于距离度量的评分函数采用了翻译原则,而语义匹配评分函数采用了组合运算符。编码模型,尤其是神经网络,在实体和关系的交互建模中起着至关重要的作用。双线性模型也引起了广泛的关注,一些张量因子分解也可以看作是这一类。其他方法包括文本描述、关系/实体类型和实体图像的辅助信息。

图6 知识图谱表示学习模型全面集合

4 知识获取

知识获取的目的是从非结构化文本中构造知识图谱,补全已有的知识图,发现和识别实体和关系。良好的构造和大规模的知识图谱可以用于许多下游应用,并赋予知识感知模型常识推理的能力,从而为人工智能铺平道路。知识获取的主要任务包括关系提取、KGC和其他面向实体的获取任务,如实体识别和实体对齐。大多数方法分别制定KGC和关系提取。然而,这两个任务也可以集成到一个统一的框架中。Han等人[57]提出了一种知识图谱与文本数据融合的联合学习框架,实现了知识图谱与文本的数据融合,解决了文本的KGC和关系提取问题。与知识获取相关的任务还有三元组分类、关系分类等。在这一部分中,我们将对知识获取技术的三个方面进行全面的回顾,即知识图谱补全、实体发现技术和关系提取技术。

4.1 知识图谱补全

基于知识图谱不完备性的特点,提出了一种新的知识图谱三元组生成方法。典型的子任务包括链路预测、实体预测和关系预测。这里给出了一个面向任务的定义。给定一个不完全知识图谱 G = ( E , R , F ) , KGC 的目的推断缺失的三元组 T = { ( h , r , t ) | ( h , r , t ) ∉ F } 。

对KGC的初步研究主要集中在学习低维嵌入进行三元组预测。在本次综述中,我们将这些方法称为基于嵌入的方法。然而,它们中的大多数都没有捕捉到多步关系。因此,最近的工作转向探索多步骤的关系路径和合并逻辑规则,分别称为关系路径推理和基于规则的推理。三元组分类是KGC的一个相关任务,它评估了一个事实三元组分类的正确性,本节还将对此进行讨论。

图7: 基于嵌入的排序和关系路径推理示意图

4.2 实体的发现

本节将基于实体的知识获取分为几个细分的任务,即实体识别、实体消歧、实体类型和实体对齐。我们将它们称为实体发现,因为它们都在不同的设置下探索实体相关的知识。

图8: 实体发现任务的示意图

4.3 关系提取

关系抽取是从纯文本中抽取未知关系事实并将其加入到知识图谱中,是自动构建大规模知识图谱的关键。由于缺乏标记的关系数据,远距离监督25使用启发式匹配来创建训练数据,假设包含相同实体提及的句子在关系数据库的监督下可以表达相同的关系。Mintz等人[103]利用文本特征(包括词汇和句法特征、命名实体标记和连接特征)对关系分类进行远程监控。传统的方法高度依赖于特征工程[103],最近的一种方法探索了特征之间的内在相关性[123]。深度神经网络正在改变知识图谱和文本的表示学习。本节回顾了神经关系提取(NRE)方法的最新进展,概述如图9所示。

图9: 神经关系提取概述

4.4 总结

这一部分回顾了不完全知识图谱的知识补全和纯文本的知识获取。

知识图谱补全完成了现有实体之间缺失的链接,或者推断出给定实体和关系查询的实体。基于嵌入的KGC方法通常依赖于三元组表示学习来捕获语义,并对完成的候选排序。基于嵌入的推理仍然停留在个体关系层面,由于忽略了知识图谱的符号性,缺乏可解释性,使得复杂推理能力较差。符号学与嵌入相结合的混合方法结合了基于规则的推理,克服了知识图谱的稀疏性,提高了嵌入的质量,促使有效的规则注入,并引入了可解释的规则。从知识图谱的图形性质出发,研究了路径搜索和神经路径表示学习,但它们在大规模图上遍历时存在连通性不足的问题。元关系学习的新方向是学习在低资源环境下对未知关系提取的快速适应使用。

实体发现从文本中获取面向实体的知识,将知识融合到知识图谱中。以序列对序列的方式探讨实体识别,实体类标讨论有噪声的类型标签和零样本,实体消歧和对齐学习统一嵌入的迭代对齐模型,解决有限数量的对齐种子样本问题。但是,如果新对齐的实体性能较差,则可能会面临错误积累问题。近年来,针对语言的知识越来越多,跨语言知识对齐的研究应运而生。

关系抽取在距离监督的假设下存在噪声模式,尤其是在不同领域的文本语料库中。因此,弱监督关系提取对于减轻噪声标记的影响是很重要的,例如,以句子包为输入的多实例学习,软选择超过实例的注意机制[90]以减少噪声模式,以及基于rl的方法将实例选择描述为硬决策。另一个原则是学习尽可能丰富的表示。由于深度神经网络可以解决传统特征提取方法中的误差传播问题,因此该领域以基于dnn的模型为主,如表四所示。

表四: 神经关系提取与研究进展综述

5 时序知识图

当前的知识图谱研究多集中在静态知识图上,事实不随时间变化,而对知识图谱的时间动态研究较少。然而,时间信息是非常重要的,因为结构化的知识只在一个特定的时期内存在,而事实的演变遵循一个时间序列。最近的研究开始将时间信息引入到KRL和KGC中,与之前的静态知识图相比,这被称为时序知识图。同时对时间嵌入和关系嵌入进行了研究。

6 知识图谱嵌入应用

丰富的结构化知识对人工智能应用非常有用。但是如何将这些符号化知识集成到现实世界应用的计算框架中仍然是一个挑战。本节介绍几种最新的基于dnn的知识驱动方法,以及NLU、推荐和问题回答方面的应用。附录E中介绍了其他应用,如数字健康和搜索引擎。

6.1自然语言理解

知识感知NLU将结构化的知识注入到统一的语义空间中,增强了语言表示。近年来,知识驱动的发展利用了显性事实知识和隐性语言表示,并探索了许多NLU任务。Chen等人[22]提出了两个知识图谱上的双图随机游动,即提出了一个基于槽的语义知识图谱和一个基于词的词汇知识图谱,以考虑口语理解中的槽间关系。Wang等[156]通过加权的词-概念嵌入,将基于知识概念化的短文本表示学习加以扩充。Peng等[118]整合外部知识库,构建用于社会短文本事件分类的异构信息图。

语言建模是一项基本的NLP任务,它根据给定的顺序预测前面的单词。传统的语言建模方法没有利用文本语料库中经常出现的实体来挖掘事实知识。如何将知识整合到语言表达中,越来越受到人们的关注。知识图谱语言模型(Knowledge graph language model, KGLM)[96]学习通过选择和复制实体来呈现知识。ERNIE-Tsinghua[205]通过聚合的预训练和随机掩蔽来融合信息实体。BERT-MK[62]对图上下文知识进行编码,主要关注医学语料库。ERNIE- baidu[142]引入了命名实体掩蔽和短语掩蔽来将知识整合到语言模型中,ERNIE 2.0[143]通过持续的多任务学习对其进行了进一步的改进。Petroni等[119]对语言模型的大规模训练和知识图谱的查询进行了反思,对语言模型和知识库进行了分析,发现通过预训练语言模型可以获得一定的事实知识。

6.2 问答

基于知识图谱的问答(KG-QA)利用知识图谱中的事实回答自然语言问题。基于神经网络的方法在分布式语义空间中表示问题和答案,也有一些方法对常识推理进行符号知识注入。

6.3 推荐系统

基于用户历史信息的协同过滤是推荐系统研究的热点。然而,它往往不能解决稀疏性问题和冷启动问题。将知识图谱作为外部信息进行集成,使推荐系统具有常识性推理能力。

通过注入基于知识图谱的边侧信息(如实体、关系和属性),许多人致力于基于嵌入的正则化以改进推荐。协同CKE[195]通过翻译KGE模型和堆叠的自动编码器联合训练KGEs、物品的文本信息和视觉内容。DKN[154]注意到时间敏感和主题敏感的新闻文章是由压缩的实体和常识组成的,它通过一个知识感知CNN模型将知识图谱与多通道的单词实体对齐的文本输入合并在一起。然而,DKN不能以端到端方式进行训练,因为实体嵌入需要提前学习。为了实现端到端训练,MKR[155]通过共享潜在特征和建模高阶项-实体交互,将多任务知识图谱表示和推荐关联起来。其他文献考虑知识图谱的关系路径和结构,而KPRN[160]将用户与项目之间的交互视为知识图谱中的实体-关系路径,并利用LSTM对该路径进行偏好推理,获取顺序依赖关系。PGPR[170]在基于知识图谱的用户-物品交互的基础上,实现了增强策略引导的路径推理。KGAT[159]将图注意网络应用于实体-关系和用户-物品图的协作知识图谱上,通过嵌入传播和基于注意的聚合对高阶连通性进行编码。

7 未来的发展方向

为了解决知识表示及其相关应用的挑战,人们做了很多努力。但仍存在一些难以解决的问题和有希望的未来方向。

7.1 复杂推理

知识表示和推理的数值计算需要一个连续的向量空间来捕获实体和关系的语义。虽然基于嵌入的方法对于复杂的逻辑推理有一定的局限性,但关系路径和符号逻辑的两个方向值得进一步探讨。递归关系路径编码、基于GNN的消息传递知识图谱、基于强化学习的路径查找和推理等方法是处理复杂推理的有效方法。对于逻辑规则和嵌入的组合,最近的著作[124,202]将马尔科夫逻辑网络与KGE结合起来,旨在利用逻辑规则并处理它们的不确定性。利用有效的嵌入技术实现不确定性和领域知识的概率推理是一个值得关注的研究方向。

7.2 统一框架

已有多个知识图谱表示学习模型被证明是等价的,如Hayshi和Shimbo[61]证明了在一定约束条件下,HOIE和ComplEx在链接预测的数学上是等价的。ANALOGY [91]提供了几种代表性模型的统一视图,包括DistMult、ComplEx和HolE。Wang等人[162]探索了几种双线性模型之间的联系。Chandrahas等[133]探讨了加法和乘法KRL模型的几何理解。大部分工作分别采用不同的模型对知识获取KGC和关系提取进行了阐述。Han等人[57]将两者放在同一框架下,提出了一种相互关注的知识图谱与文本信息共享的联合学习框架。对知识表示和推理的统一理解研究较少。然而,以类似于图网络[5]的统一框架的方式进行统一的研究,将是值得填补研究空白的。

7.3 可解释性

知识表示和注入的可解释性是知识获取和实际应用的关键问题。已经为可解释性作了初步的努力。ITransF[175]使用稀疏向量进行知识迁移,并用注意力可视化进行解释。CrossE[200]通过使用基于嵌入的路径搜索来生成链接预测的解释,探索了知识图谱的解释方案。然而,最近的神经模型在透明性和可解释性方面存在局限性,尽管它们取得了令人印象深刻的性能。一些方法结合了黑盒神经模型和符号推理,通过合并逻辑规则来提高互操作性。可解释性可以说服人们相信预测。因此,进一步的工作应该是提高预测知识的可解释性和可靠性。

7.4 可扩展性

可扩展性是大规模知识图谱的关键。在计算效率和模型表达性之间存在一种权衡。几种嵌入方法都是利用简化来降低计算成本,如利用循环相关运算来简化张量积[113]。然而,这些方法仍然难以扩展到数百万个实体和关系。

使用马尔可夫逻辑网络等概率逻辑推理需要大量的计算,因此很难扩展到大规模的知识图谱。最近的一个神经逻辑模型[124]中的规则是通过简单的穷举搜索生成的,这使得它在大规模的知识图谱上显得不足。ExpressGNN[202]试图使用NeuralLP[186]进行有效的规则归纳。但是,要处理复杂的深层架构和不断增长的知识图谱,还有很长的路要走。

7.5 知识聚合

全局知识的聚合是知识感知应用的核心。例如,推荐系统使用知识图谱对用户-物品交互进行建模,联合对文本进行分类,将文本和知识图谱编码到语义空间中。现有的知识聚合方法大多设计了注意机制和GNNs等神经网络结构。自然语言处理社区已经从大规模的通过Transformer和BERT模型等变体的训练中得到了发展,而最近的一项发现[119]表明,在非结构化文本上的训练预训练语言模型实际上可以获得一定的事实知识。大规模的训练是一种直接的知识注入方式。然而,以一种有效的、可解释的方式重新思考知识聚合的方式也具有重要的意义。

7.6 自动构建和动态知识图谱

当前的知识图谱高度依赖于手工构建,这是一种劳动密集型和昂贵的工作。知识图谱在不同认知智能领域的广泛应用,要求从大规模非结构化内容中自动构建知识图谱。目前的研究主要集中在已有知识图谱监督下的半自动构建方面。面对多模态性、异构性和大规模的应用,自动构建仍然面临着巨大的挑战。

主流的研究主要集中在静态知识图谱上,在预测时间范围有效性和学习时间信息和实体动态方面也有一些工作。许多事实只在特定的时期内有效。考虑到知识图铺的时间特性,动态知识图谱可以解决传统知识表示和推理的局限性。

8 结论

知识图谱作为人类知识的集合,随着知识表示学习、知识获取方法的出现和知识感知应用的广泛,知识图谱的研究越来越受到重视。本文从四个方面进行了全面的综述: 1)知识图谱嵌入,从嵌入空间、评分指标、编码模型、外部信息嵌入、训练策略等方面进行了全方位的系统综述; 2)从嵌入学习、关系路径推理、逻辑规则推理三个角度对实体发现、关系提取、图补全的知识获取;时序知识图表示学习与完成;4) 在自然语言理解,推荐系统,问题回答和其他杂项应用上的真实世界的知识感知应用。此外,还介绍了数据集和开源库的一些有用资源,并对未来的研究方向进行了讨论。知识图谱承载着一个庞大的研究社区,并具有广泛的方法和应用。我们进行这项综述是为了总结当前有代表性的研究工作和趋势,并期望它能促进未来的研究。

成为VIP会员查看完整内容
0
120

【导读】知识图谱一直是学术界和工业界关注的热点。随着AAAI2020的到来,专知小编整理了最新10篇关于知识图谱的论文,来自清华大学、中科大、北航、中山大学、UCL、Facebook、腾讯、阿里巴巴等,包含义原知识图谱、知识迁移、知识图谱层次表示、常识知识图谱补全。

1、Towards Building a Multilingual Sememe Knowledge Base: Predicting Sememes for BabelNet Synsets(建立多语言义原知识库:预测BabelNet Synsets的义原)

AAAI2020 oral ,清华大学

作者:Fanchao Qi, Liang Chang, Maosong Sun, Sicong Ouyang, Zhiyuan Liu

摘要:义原是人类语言中最小的语义单位。义原知识库(KBs)包含了由义原标注的词,已成功地应用于许多自然语言处理任务中。然而,现有的义原KBs仅建立在少数几种语言上,这阻碍了它们的广泛应用。为了解决这个问题,我们提出基于BabelNet(一种多语言百科词典)为多种语言构建统一的义原知识库。我们首先构建一个作为多语言义原知识库种子的数据集。它为超过15000个synset (BabelNet的条目)手工注释义位。然后,我们提出了一种新的自动预测synsets义位的任务,目的是将种子数据集扩展成一个可用的知识库。我们还提出了两个简单有效的模型,利用了不同的synsets信息。最后,我们进行了定量和定性分析,以探索任务中的重要因素和困难。所有的源代码和数据,这项工作可以获得 https://github.com/thunlp/BabelNet-Sememe-Prediction

论文地址: https://www.zhuanzhi.ai/paper/a9486b11f2d44f239cd36c209b312946

2、Knowledge Graph Transfer Network for Few-Shot Recognition(知识图谱迁移网络小样本识别)

AAAI2020 oral ,中山大学,暗物质

作者:Riquan Chen, Tianshui Chen, Xiaolu Hui, Hefeng Wu, Guanbin Li, Liang Lin

摘要:小样本学习的目标是在给定一些基类有充足训练样本的情况下,从非常少的样本中学习新的类别。这个任务的主要挑战是新类很容易由颜色、质地、形状的物体或背景上下文(即特异性),这特别是对于训练样本少且不常见的相应的类别非常突出(见图1)。幸运的是,我们发现迁移信息的相关类别可以帮助学习新概念,从而避免新概念主导的特异性。此外,结合不同类别之间的语义关联可以有效地规范这种信息传递。在本文中,我们将语义关联以结构化的知识图谱的形式表示出来,并将此图集成到深度神经网络中,通过一种新的知识图谱传输网络(KGTN)来促进小样本学习。具体地,通过使用对应类别的分类器权值初始化每个节点,学习一种传播机制,通过图来自适应地传播节点消息,探索节点间的交互,将基类的分类器信息传递给新类别的分类器信息。在ImageNet数据集上的大量实验表明,与当前领先的对比方法相比,性能有了显著的改进。此外,我们还构建了一个覆盖更大范围类别的ImageNet-6K数据集。在这个数据集上的实验进一步证明了我们提出的模型的有效性。

论文地址: https://www.zhuanzhi.ai/paper/391fa8f7db194b700d66a14a75b714bd

3、Reasoning on Knowledge Graphs with Debate Dynamics(基于辩论动力学的知识图谱推理)

AAAI2020 ,Siemens Corporate Technology

作者:Marcel Hildebrandt, Jorge Andres Quintero Serna, Yunpu Ma, Martin Ringsquandl, Mitchell Joblin, Volker Tresp

摘要: 我们提出了一种基于辩论动力学的知识图谱自动推理方法。其主要思想是将三元组分类任务框定为两个抽取论点(知识图谱中的路径)的强化学习代理之间的辩论游戏,目标分别是促进事实为真(正题)或事实为假(反题)。基于这些论据,一个叫做“法官”的二元分类器决定事实是对还是错。这两个代理可以被看作是稀疏的、对抗性的特征生成器,它们为正题或反题提供了可解释的证据。与其他黑盒方法相比,这些参数允许用户了解法官的决定。由于这项工作的重点是创建一个可解释的方法,以保持一个有竞争力的预测精度,我们基准的三重分类和链接预测任务我们的方法。因此,我们发现我们的方法优于基准数据集FB15k-237、WN18RR和Hetionet上的几个基线。我们也进行了一个调查,发现提取的参数对用户是有益的。

论文地址: https://www.zhuanzhi.ai/paper/81aa00f925a022ed59d97dcce89c11d6

4、Differentiable Reasoning on Large Knowledge Bases and Natural Language(大规模知识库与自然语言上的可微分推理)

AAAI2020 ,UCL Centre for Artificial Intelligence, University College London,Facebook AI Research

作者:Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, Edward Grefenstette

摘要:用自然语言和知识库(KBs)表达的知识进行推理是人工智能面临的主要挑战,在机器阅读、对话和问题回答等方面都有应用。联合学习文本表示和转换的一些神经体系结构非常缺乏数据效率,很难分析它们的推理过程。这些问题由端到端的可微推理系统(如神经定理证明程序(NTPs))来解决,尽管它们只能用于小型符号KBs。在本文中,我们首先提出贪心NTPs (GNTPs),这是NTPs的扩展,解决了它们的复杂性和可伸缩性限制,从而使它们适用于真实世界的数据集。该结果是通过动态构建NTPs的计算图来实现的,并且只包含推理过程中最有希望的证明路径,从而获得更有效的模型。然后,我们提出了一种新的方法,通过在一个共享的嵌入空间中嵌入逻辑事实和自然语言句子来联合推理KBs和篇章提及。我们发现,GNTPs的性能与NTPs相当,但成本仅为NTPs的一小部分,同时在大型数据集上获得了具有竞争力的链接预测结果,为预测提供了解释,并引入了可解释的模型。源代码,数据集,和补充材料可在网上https://github.com/uclnlp/gntp

论文地址: https://www.zhuanzhi.ai/paper/5c5ba7a95bb0678315804cffdac41599

5、Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering(通过知识库问题回答来改进知识感知对话的生成)

AAAI2020 ,华南理工,腾讯

作者:Jian Wang, Junhao Liu, Wei Bi, Xiaojiang Liu, Kejing He, Ruifeng Xu, Min Yang

摘要:神经网络模型常常面临将常识引入开放域对话系统的挑战。本文提出了一种新的知识感知对话生成模型(TransDG),该模型将基于知识库问答(KBQA)任务的问题表示和知识匹配能力进行转换,以促进话语理解和对话生成的事实知识选择。此外,我们提出了一种响应引导注意和多步骤解码策略,以指导我们的模型将重点放在用于响应生成的相关特征上。在两个基准数据集上的实验表明,该模型在生成信息丰富、流畅的对话方面具有较强的优越性。我们的代码在 https://github.com/siat-nlp/TransDG.

论文地址https://www.zhuanzhi.ai/paper/9a1e55686d9b78f5c2569a607fa504b2

6、Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction(用于链接预测的学习层次感知知识图嵌入)

AAAI2020 ,中科大

作者:Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, Jie Wang

摘要:知识图谱嵌入的目的是将实体和关系表示为低维向量(或矩阵、张量等),已经被证明是一种预测知识图谱中缺失链接的强大技术。现有的知识图谱嵌入模型主要侧重于对称/反对称、反转、复合等关系模式的建模。然而,许多现有的方法无法对语义层次结构建模,而这在实际应用程序中是很常见的。为了解决这一问题,我们提出了一种新的知识图谱嵌入模型——层次感知知识图谱嵌入(HAKE),它将实体映射到极坐标系统中。HAKE的灵感来自于这样一个事实,即在极坐标系统中的同心圆可以自然地反映层次结构。具体来说,径向坐标的目标是在层次结构的不同层次上对实体进行建模,半径较小的实体被期望在更高的层次上;角坐标的目的是区分层次结构中同一层次上的实体,这些实体的半径大致相同,但角度不同。实验表明,HAKE可以有效地对知识图谱中的语义层次进行建模,并在链接预测任务的基准数据集上显著优于现有的最先进的方法。

.

论文地址: https://www.zhuanzhi.ai/paper/1369a6bd83e18cd1e6eeb97d883bb652

7、Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation(用具有门控多跳邻居聚合的知识图谱对齐网络)

AAAI2020 ,南京大学,阿里巴巴

作者:Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu

摘要:图神经网络由于具有识别同构子图的能力,已经成为一种强大的基于嵌入的实体对齐范式。然而,在实知识图(KGs)中,对应实体通常具有非同构的邻域结构,这很容易导致gnn产生不同的表示。为了解决这一问题,我们提出了一种新的KG对齐网络,即AliNet,旨在以端到端方式缓解邻域结构的非同构性。由于模式异构性,对等实体的直接邻居通常是不相似的,AliNet引入了远程邻居来扩展它们的邻居结构之间的重叠。它采用了一种注意机制,以突出有益的遥远的邻居和减少噪音。然后,利用门控机制控制直接和远处邻居信息的聚合。我们进一步提出了一个关系损失来细化实体表示。我们进行了深入的实验,详细的烧蚀研究和分析的五个实体对齐数据集,证明了AliNet的有效性。

.

论文地址: https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

8、Rule-Guided Compositional Representation Learning on Knowledge Graphs(规则指导的知识图谱组合式表示学习)

AAAI2020 ,北航

作者:Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu, Jingyang Li, Xiaowei Zhang

摘要:知识图谱的表示学习是将知识图中的实体和关系嵌入到低维连续向量空间中。早期的KG嵌入方法只关注三元组编码的结构化信息,由于KGs的结构稀疏性,导致其性能有限。最近的一些尝试考虑路径信息来扩展KGs的结构,但在获取路径表示的过程中缺乏可解释性。本文提出了一种新的基于规则和路径的联合嵌入(RPJE)方案,该方案充分利用了逻辑规则的可解释性和准确性、KG嵌入的泛化性以及路径的补充语义结构。具体来说,首先从KG中挖掘出不同长度(规则体中的关系数)的Horn子句形式的逻辑规则,并对其进行编码,用于表示学习。然后,利用长度2的规则来精确地组合路径,而使用长度1的规则来明确地创建关系之间的语义关联和约束关系嵌入。优化时还考虑了规则的置信度,保证了规则在表示学习中的可用性。大量的实验结果表明,RPJE在KG完成任务上的表现优于其他最先进的基线,这也证明了利用逻辑规则和路径来提高表示学习的准确性和可解释性的优越性。

.

论文地址https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

9、InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions(规InteractE:通过增加特征交互来改进基于卷积的知识图谱嵌入)

AAAI2020 ,Indian Institute of Science, Columbia University

作者:Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, Partha Talukdar

摘要:现有的知识图谱大多存在不完备性,可以通过基于已知事实推断缺失的链接来缓解不完备性。一种流行的方法是生成实体和关系的低维嵌入,并使用它们进行推论。ConvE是最近提出的一种方法,它将卷积滤波器应用于实体和关系嵌入的二维重塑,以捕获其组件之间丰富的交互。然而,ConvE能够捕获的交互的数量是有限的。在这篇论文中,我们分析了增加这些相互作用的数量如何影响链路预测性能,并利用我们的观测结果提出了相互作用。InteractE基于三个关键思想:特征置换、新颖的特征重塑和循环卷积。通过大量的实验,我们发现InteractE在FB15k-237上的性能优于最先进的卷积链路预测基线。此外,InteractE在FB15k-237、WN18RR和YAGO3-10数据集上的MRR评分分别比ConvE高9%、7.5%和23%。结果验证了我们的中心假设——增加特征交互有助于链接预测性能。我们提供InteractE的源代码,以鼓励可重复的研究。http://github.com/malllabiisc/ InteractE.

.

论文地址: https://www.zhuanzhi.ai/paper/5bbb1f49b1b4b26b6d1de5c7dce3a953

10、Commonsense Knowledge Base Completion with Structural and Semantic Context(具有结构和语义上下文的常识知识库的完成)

AAAI2020 ,Allen Institute for Artificial Intelligence 华盛顿大学

作者:Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi

摘要:与经过大量研究的传统知识库(如Freebase)相比,对常识知识图谱(如原子图和概念图)的自动知识库补全带来了独特的挑战。常识知识图谱使用自由格式的文本来表示节点,这使得节点的数量比传统KBs多了几个数量级(ATOMIC比Freebase多18倍(FB15K-237))。重要的是,这意味着图数据结构将显著稀疏化——这是现有KB补全方法面临的主要挑战,因为这些方法在相对较小的节点集上采用密集连接的图数据。在本文中,我们提出了新的知识库完成模型,该模型可以通过利用节点的结构和语义上下文来解决这些挑战。具体来说,我们研究了两个关键的思想: (1) 从局部图结构学习,使用图卷积网络和自动图加密,(2) 从预先训练的语言模型学习到知识图谱,以增强知识的上下文表示。我们描述了将来自这两个来源的信息合并到一个联合模型中的方法,并提供了原子知识库完成和使用ConceptNet上的排名指标进行评估的第一个经验结果。我们的结果证明了语言模型表示在提高链接预测性能方面的有效性,以及在训练子图以提高计算效率时从局部图结构(对ConceptNet的MRR +1.5分)学习的优势。对模型预测的进一步分析揭示了语言模型能够很好地捕捉到的常识类型。

.

论文地址: https://www.zhuanzhi.ai/paper/535d810640d4b84fb46f3fd7e678f423

成为VIP会员查看完整内容
0
69

主题: Ceres: Harvesting Knowledge from Semi-Structured web pages

摘要: 在本次主题演讲中,Xin Luna Dong讲述了知识图谱的类型,讲述了为什么需要半结构网页,以及如何从半结构化网页获取知识。

嘉宾介绍: Xin Luna Dong,自2016年7月起担任亚马逊首席科学家,领导亚马逊产品知识图的构建工作,管理科学家团队开展知识管理、数据清洗与集成、信息提取、图形挖掘与嵌入、基于知识的搜索与推荐等方面的研究。

成为VIP会员查看完整内容
0
5

讲座题目

大时间序列预测的理论与实践:Forecasting Big Time Series: Theory and Practice

讲座简介

时间序列预测是业务流程自动化和优化的一个关键组成部分:在零售业,根据对不同地区未来需求的预测来决定要订购哪些产品以及在哪里存储这些产品;在云计算中,服务和基础设施组件的估计未来使用量指导容量规划;仓库和工厂的劳动力调度需要对未来的工作量进行预测。近年来,预测技术和应用的范式发生了变化,从基于计算机辅助的模型和假设到数据驱动和全自动化。这种转变可以归因于大量、丰富和多样的时间序列数据源的可用性,并导致一系列需要解决的挑战,例如:我们如何建立统计模型,以便有效地学习从大量和多样的数据源进行预测?在观测有限的情况下,我们如何利用“相似”时间序列的统计能力来改进预测?对于构建能够处理大量数据的预测系统有什么意义? 本教程的目标是提供解决大规模预测问题的最重要方法和工具的简明直观概述。我们回顾了三个相关领域的研究现状:(1)时间序列的经典建模,(2)包括张量分析和深度学习的现代预测方法。此外,我们还讨论了建立大规模预测系统的实际方面,包括数据集成、特征生成、回溯测试框架、误差跟踪和分析等。

讲座嘉宾

Christos Faloutsos 现任职务于卡内基梅隆大学 (Carnegie Mellon University)电子和计算机工程教授,研究领域:图和流的数据挖掘,分形、自相似与幂律,视频、生物和医学数据库的索引和数据挖掘,数据库性能评估(数据放置、工作负载特征)。

成为VIP会员查看完整内容
0
38

主题: Storytelling from Structured Data and Knowledge Graphs : An NLG Perspective

摘要: 在本教程中,我们讨论将结构化数据(如表格形式的数据)和知识库(如知识图谱)翻译成自然语言论述的基础、方法和系统开发方面。本教程涵盖自然语言生成(NLG)的挑战和方法,主要关注(结构化)数据到文本的范式。我们的与会者将能够了解以下内容:(1)关于如何应用现代自然语言处理和自然语言处理技术来描述和总结非语言性质或具有某种结构的文本数据的基本观点和趋势,以及(2)一些有趣的开放式问题,这将为今后的研究做出重大贡献。我们将概述各种方法,从数据表示技术到适用于数据的领域解决方案,再到文本问题设置。从传统的基于规则/启发式驱动、现代的数据驱动和超现代的深层神经风格体系结构出发,讨论了各种解决方案,并简要讨论了评价和质量评估。 由于大规模的领域独立标记(并行)数据很少用于数据到文本的问题,本教程的很大一部分将致力于无监督、可伸缩和领域适应性的方法。

邀请嘉宾:

Abhijit Mishra,目前是印度班加罗尔IBM Research的一员,担任人工智能技术系的研究科学家。在加入IBM Research之前,他是孟买IIT计算机科学与工程系(CSE)的博士学者,在Pushpak Bhattacharyya教授的指导下工作。

Anirban Laha,他目前是亚伦·库尔维尔教授建议的蒙特勒大学(MILA)一年级博士生。他的兴趣在于机器学习/深度学习在自然语言处理中的应用。此前,他在IBM Research的自然语言生成(NLG)项目中工作了三年,并在顶级会议和期刊上发表过论文,如NeurIPS、ACL、NAACL-HLT和计算语言学。在IBM,他还为IBM项目辩论会做出了贡献,该会最近在全球范围内获得了广泛的新闻报道,因为一场现场机器与人类的辩论(更多新闻)。在加入IBM之前,他曾在微软必应广告公司(2013-2015)担任应用科学家,在亚马逊网站(2010-2011)担任SDE。

成为VIP会员查看完整内容
Storytelling from Structured Data and Knowledge Graphs An NLG Perspective.pdf
0
12

报告主题: On The Role of Knowledge Graphs in Explainable AI

嘉宾介绍: Freddy Lecue博士是加拿大蒙特利尔泰勒斯人工智能技术研究中心的首席人工智能科学家。他也是法国索菲亚安提波利斯温姆斯的INRIA研究所的研究员。在加入泰雷兹新成立的人工智能研发实验室之前,他曾于2016年至2018年在埃森哲爱尔兰实验室担任人工智能研发主管。在加入埃森哲之前,他是一名研究科学家,2011年至2016年在IBM research担任大规模推理系统的首席研究员,2008年至2011年在曼彻斯特大学(University of Manchester)担任研究员,2005年至2008年在Orange Labs担任研究工程师。

报告目录:

  • 人工智能中的解释
    • 动机
    • 定义
    • 评估(以及人类在可解释性人工智能中的角色)
    • 人类作用
    • 不同AI领域的解释性
  • 知识图谱在可解释性机器学习中的角色和作用
  • 利用知识图谱在机器学习中的可解释性人工智能工业应用
  • 结论
成为VIP会员查看完整内容
ISWC2019-FreddyLecue-Thales-OnTheRoleOfKnowledgeGraphsInExplainableAI.pdf
0
27
小贴士
相关VIP内容
专知会员服务
23+阅读 · 7月10日
知识图谱本体结构构建论文合集
专知会员服务
22+阅读 · 2019年10月9日
相关资讯
相关论文
Aidan Hogan,Eva Blomqvist,Michael Cochez,Claudia d'Amato,Gerard de Melo,Claudio Gutierrez,José Emilio Labra Gayo,Sabrina Kirrane,Sebastian Neumaier,Axel Polleres,Roberto Navigli,Axel-Cyrille Ngonga Ngomo,Sabbir M. Rashid,Anisa Rula,Lukas Schmelzeisen,Juan Sequeda,Steffen Staab,Antoine Zimmermann
65+阅读 · 3月4日
Shaoxiong Ji,Shirui Pan,Erik Cambria,Pekka Marttinen,Philip S. Yu
50+阅读 · 2月2日
Knowledge Distillation from Internal Representations
Gustavo Aguilar,Yuan Ling,Yu Zhang,Benjamin Yao,Xing Fan,Edward Guo
4+阅读 · 2019年10月8日
Malte Ostendorff,Peter Bourgonje,Maria Berger,Julian Moreno-Schneider,Georg Rehm,Bela Gipp
4+阅读 · 2019年9月18日
Incorporating Domain Knowledge into Medical NLI using Knowledge Graphs
Soumya Sharma,Bishal Santra,Abhik Jana,T. Y. S. S. Santosh,Niloy Ganguly,Pawan Goyal
3+阅读 · 2019年8月31日
Building Knowledge Graphs About Political Agents in the Age of Misinformation
Daniel Schwabe,Carlos Laufer,Antonio Busson
3+阅读 · 2019年1月29日
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
Robyn Speer,Joshua Chin,Catherine Havasi
7+阅读 · 2018年12月11日
Zhenghao Liu,Chenyan Xiong,Maosong Sun,Zhiyuan Liu
7+阅读 · 2018年6月3日
Luke Vilnis,Xiang Li,Shikhar Murty,Andrew McCallum
4+阅读 · 2018年5月17日
Agustinus Kristiadi,Mohammad Asif Khan,Denis Lukovnikov,Jens Lehmann,Asja Fischer
4+阅读 · 2018年2月3日
Top