教程题目

知识图主要思想简史教程:A Brief History of Knowledge Graph's Main Ideas: A tutorial

教程内容

知识图谱可以被认为是实现了计算机科学早期的愿景,即创建大规模集成知识和数据的智能系统。“知识图”一词是在本世纪初由研究人员提出的,自2012年谷歌推广以来,在学术界和业界迅速流行起来。必须指出的是,无论“知识图”一词的讨论和定义如何,它都源于语义网、数据库、知识表示和推理、自然语言处理、机器学习等不同研究领域的科学进步。来自这些不同学科的思想和技术的集成使知识图的概念更加丰富,但同时也给实践者和研究者提出了一个挑战,使他们知道当前的进步是如何从早期技术发展而来的,并植根于早期技术。

教程作者

Claudio Gutierrez ,Juan F. Sequeda,来自于智利国立大学。

成为VIP会员查看完整内容
A Brief History of Knowledge Graph's Main Ideas.pdf
23+
0+

相关内容

中文知识图谱(Chinese Knowledge Graph),最早起源于Google Knowledge Graph。知识图谱本质上是一种语义 网络。其结点代表实体(entity)或者概念(concept),边代表实体/概念之间的各种语义关系。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

报告主题: On The Role of Knowledge Graphs in Explainable AI

嘉宾介绍: Freddy Lecue博士是加拿大蒙特利尔泰勒斯人工智能技术研究中心的首席人工智能科学家。他也是法国索菲亚安提波利斯温姆斯的INRIA研究所的研究员。在加入泰雷兹新成立的人工智能研发实验室之前,他曾于2016年至2018年在埃森哲爱尔兰实验室担任人工智能研发主管。在加入埃森哲之前,他是一名研究科学家,2011年至2016年在IBM research担任大规模推理系统的首席研究员,2008年至2011年在曼彻斯特大学(University of Manchester)担任研究员,2005年至2008年在Orange Labs担任研究工程师。

报告目录:

  • 人工智能中的解释
    • 动机
    • 定义
    • 评估(以及人类在可解释性人工智能中的角色)
    • 人类作用
    • 不同AI领域的解释性
  • 知识图谱在可解释性机器学习中的角色和作用
  • 利用知识图谱在机器学习中的可解释性人工智能工业应用
  • 结论
成为VIP会员查看完整内容
ISWC2019-FreddyLecue-Thales-OnTheRoleOfKnowledgeGraphsInExplainableAI.pdf
5+
0+

知识图谱一直是研究的热点,东南大学漆桂林老师等发表了一篇关于中文知识图谱构建的综述论文,详细讲述了当前中文知识图谱的研究进展,是非常好的学习资料。

随着智能技术的不断发展,作为人工智能支柱的知识图谱以其强大的知识表示和推理能力受到了学术界和产业界的广泛关注。近年来,知识图谱在语义搜索、问答、知识管理等领域得到了广泛的应用。构建中文知识图谱的技术也在迅速发展,不同的中文知识图谱以支持不同的应用。同时,我国在知识图谱开发方面积累的经验对非英语知识图谱的开发也有很好的借鉴意义。本文旨在介绍中文知识图谱的构建技术及其应用,然后介绍了典型的中文知识图谱,此外我们介绍了构建中文知识图谱的技术细节,并介绍了了中文知识图谱的几种应用。

成为VIP会员查看完整内容
A Survey of Techniques for Constructing Chinese.pdf
23+
0+
Top