论文标题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

论文来源: ACM SIGKDD 2020

论文链接:https://www.zhuanzhi.ai/paper/2d6c4333dfba038f1b318a37f5bc035d

会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通过交互式的会话,user实时表达自己的偏好,system理解user的意图并推荐商品。目前会话推荐系统有两个问题需要解决。首先,对话数据本身缺少足够的上下文信息,无法准确地理解用户的偏好(传统的推荐任务会有历史交互序列或者用户属性,但是该场景下只有对话的记录)。其次,自然语言的表示和商品级的用户偏好之间存在语义鸿沟(在user的话语“Can you recommend me a scary movie like Jaws”中,用户偏好反映在单词”scary“和电影实体”Jaws“上,但这两类信息天然存在语义的差异)。

为了解决上述问题,本文提出了模型KG-based Semantic Fusion approach(KGSF),通过互信息最大化的多知识图谱语义融合技术,不仅打通了对话中不同类型信息的语义鸿沟,同时针对性得设计了下游的模型,以充分发挥两个知识图谱的作用,在会话推荐系统的两个任务上均取得了state-of-the-art的效果。

成为VIP会员查看完整内容
0
13

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

使用图模型解决问题时,面对实际环境中来源多样、形式复杂的数据,怎样将多种信息进行合理融合是一个值得关注的问题。本文将介绍两篇发表于KDD 2020的与图模型信息融合相关的工作。

第一篇工作为《HGMF: Heterogeneous Graph-based Fusion for Multimodal Data with Incompleteness》,该工作主要是基于异质图来解决多模态学习中在信息融合时会遇到的模态缺失问题。

第二篇工作为《Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion》,该工作通过引入两个外部知识图谱丰富会话的语义信息,并通过互信息最大化弥补知识图谱间的语义鸿沟以提升会话推荐系统的表现。

成为VIP会员查看完整内容
0
11

近年来,许多在线平台(如亚马逊和淘宝网)都取得了巨大成功。在线平台上的用户行为是动态变化的,且会随着时间而发展。序列推荐的主要目标就是从用户历史行为中捕捉关键的信息,并基于此准确表征用户兴趣进而提供高质量的推荐[1,2,3]。已有研究人员基于深度学习提出很多序列推荐的模型,此外还有研究人员结合丰富的上下文信息(如商品属性)一起进行用户兴趣建模,实验表明,上下文信息对于提高推荐效果很重要。

尽管现有方法在一定程度上已被证明有效,但它们有两个可能会影响推荐效果的缺陷。首先,他们主要依靠“下一个物品推荐”(Next Item Prediction)损失函数来学习整个模型。在使用上下文信息时,也仍然只使用这一个优化目标。已有研究表明,这种优化方法很容易受到数据稀疏性等问题的影响。此外,它们过分强调最终的推荐性能,而上下文数据和序列数据之间的关联或融合却没有在数据表示中被很好地捕获。多个领域的实验结果表明[4,5,6],更有效的数据表示方法(例如,预先训练的上下文信息嵌入)已成为改善现有模型或体系结构性能的关键因素。因此,有必要重新考虑学习范式并开发更有效的序列推荐系统。

为了解决上述问题,我们借鉴了自监督学习的思想来改进序列推荐的方法。自监督学习是一个新兴的学习范式,旨在让模型从原始数据的内在结构中学习。自监督学习的一般框架是首先从原始数据中构建新的监督信号,然后通过这些额外设计的优化目标来对模型进行预训练。如之前讨论的,有限的监督信号和低效的数据表示是现有的神经序列推荐方法的两个主要问题。幸运的是,自监督学习似乎为解决这两个问题提供了解决方案:它通过内在数据相关性来设计辅助训练目标以提供丰富的自监督信号,并通过预训练的方法增强数据表示。对于序列推荐,上下文信息以不同的形式存在,包括物品,属性,子序列和序列。开发统一表征这种数据相关性的方法并不容易。对于这个问题,我们借鉴最近提出的互信息最大化(Mutual Information Maximization, MIM)方法,其已被证明可以有效捕获原始输入的不同视图(或部分)之间的相关性。

基于以上,我们提出了一种基于自监督学习方法的序列推荐模型(Self-Supervised Learning Sequential Recommendation, S3-Rec)。基于自注意力机制的体系结构[3],我们首先使用设计的自监督训练目标对模型进行预训练,然后根据推荐任务对模型进行微调。此工作的主要新颖之处在预训练阶段,我们基于MIM的统一形式精心设计了四个自监督的优化目标,分别用于捕获物品-属性间,序列-物品间,序列-属性间和序列-子序列间的相关性。因此,S3-Rec能够以统一的方式来表征不同粒度级别或不同形式数据之间的相关性,并且也可以灵活地适应新的数据类型或关联模式。通过这样的预训练方法,我们可以有效地融合各种上下文数据,并学习属性感知的上下文化的数据表示。最后,将学习到的表示输入推荐模型,并根据推荐任务对其进行优化。

为了验证S3-Rec的有效性,我们在6个不同领域的真实数据集上进行了充分的实验。实验结果表明,S3-Rec超过了目前的SOTA,并且在训练数据非常有限的情况表现得尤为明显。另外S3-Rec还可以有效得适应其他类别的神经体系结构,例如GRU[1]和CNN[2]。我们的主要贡献概括如下:(1)据我们所知,这是首次采用MIM进行自监督学习来改善序列推荐任务的工作;(2)我们提出了4个自监督优化目标来最大化不同形式或粒度的上下文信息的互信息;(3)在6个数据集上的充分实验证明了我们方法的有效性。

成为VIP会员查看完整内容
0
14

主题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

摘要: 会话推荐系统(CRS)旨在通过交互式对话向用户推荐高质量的项目。尽管已为CRS做出了一些努力,但仍有两个主要问题有待解决。首先,对话数据本身缺少足够的上下文信息,无法准确地了解用户的偏好。第二,自然语言表达与项目级用户偏好之间存在语义鸿沟。为了解决这些问题,我们结合了面向单词和面向实体的知识图(KG)来增强CRS中的数据表示,并采用互信息最大化来对齐单词级和实体级的语义空间。基于对齐的语义表示,我们进一步开发了用于进行准确推荐的KGenhanced推荐器组件,以及可以在响应文本中生成信息性关键字或实体的KG增强对话框组件。大量的实验证明了我们的方法在推荐和对话任务上都能产生更好的性能。

成为VIP会员查看完整内容
0
30
小贴士
相关资讯
相关论文
Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion
Kun Zhou,Wayne Xin Zhao,Shuqing Bian,Yuanhang Zhou,Ji-Rong Wen,Jingsong Yu
6+阅读 · 7月8日
Arvind Neelakantan,Semih Yavuz,Sharan Narang,Vishaal Prasad,Ben Goodrich,Daniel Duckworth,Chinnadhurai Sankar,Xifeng Yan
5+阅读 · 2019年10月31日
Learning Disentangled Representations for Recommendation
Jianxin Ma,Chang Zhou,Peng Cui,Hongxia Yang,Wenwu Zhu
4+阅读 · 2019年10月31日
Hongwei Wang,Fuzheng Zhang,Miao Zhao,Wenjie Li,Xing Xie,Minyi Guo
11+阅读 · 2019年1月23日
Badri N. Patro,Vinod K. Kurmi,Sandeep Kumar,Vinay P. Namboodiri
5+阅读 · 2018年6月15日
Yu Su,Honglei Liu,Semih Yavuz,Izzeddin Gur,Huan Sun,Xifeng Yan
9+阅读 · 2018年4月19日
Junliang Guo,Linli Xu,Xunpeng Huang,Enhong Chen
3+阅读 · 2018年3月5日
Hongwei Wang,Fuzheng Zhang,Xing Xie,Minyi Guo
3+阅读 · 2018年1月25日
Ting-Hao 'Kenneth' Huang,Joseph Chee Chang,Jeffrey P. Bigham
5+阅读 · 2018年1月10日
Xiangyu Zhao,Liang Zhang,Zhuoye Ding,Dawei Yin,Yihong Zhao,Jiliang Tang
12+阅读 · 2018年1月5日
Top