【导读】可解释性是当下机器学习研究特点之一。最近,来自复旦大学的研究生朱明超,将业界《Interpretable Machine Learning》(可解释机器学习)翻译成了中文。

可解释机器学习:打开黑盒之谜(238页书籍下载)

这本书最初是由德国慕尼黑大学博士Christoph Molnar耗时两年完成的,长达250页,是仅有的一本系统介绍可解释性机器学习的书籍。

这本书最初是由Christoph Molnar耗时两年完成的《Interpretable Machine Learning》,长达250页,在公开至今该书得到密切关注,这是在可解释性领域可以找到的仅有的一本书。

这本书由复旦大学朱明超完成它的翻译和校正工作,目前已经开源放到GitHub网页上,《可解释的机器学习》。作者Christoph Molnar 在其后也发到了推特上。

“可解释”是这本书的核心论题。作者Molnar认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。

Molnar表示,虽然数据集与黑盒机器学习解决了很多问题,但这不是最好的使用姿势,现在模型本身代替了数据成为了信息的来源,但可解释性可以提取模型捕捉到的额外信息。当我们的日常生活中全都是机器和算法时,也需要可解释性来增加社会的接受度。毕竟要是连科学家都研究不透“黑盒”,怎样让普通人完全信任模型做出的决策呢?

这本书的重点是机器学习的可解释性。你将学习简单的、可解释的模型,如线性回归、决策树和决策规则等。后面几章重点介绍了解释黑盒模型的模型无关的一般方法,如特征重要性和累积局部效应,以及用 Shapley 值和 LIME 解释单个实例预测。

对各种解释方法进行了深入的解释和批判性的讨论。它们是如何工作的?优点和缺点是什么?如何解释它们的输出?本书将使你能够选择并正确应用最适合你的机器学习项目的解释方法。你阅读本书后,内化知识还使你能够更好地理解和评估arxiv.org上发表的有关可解释性的新论文。

这本书中用许多平实的语言,结合各类现实生活中的例子介绍了相关的概念,还配了参考链接可以进一步学习了解。

《可解释的机器学习》该书总共包含 7 章内容。章节目录如下:

  • 第一章:前言
  • 第二章:可解释性
  • 第三章:数据集
  • 第四章:可解释的模型
  • 第五章:模型无关方法
  • 第六章:基于样本的解释
  • 第七章:水晶球

传送门 GitHub:https://github.com/MingchaoZhu/InterpretableMLBook

成为VIP会员查看完整内容
0
157

相关内容

深度神经网络(DNN)是实现人类在许多学习任务上的水平的不可缺少的机器学习工具。然而,由于其黑箱特性,很难理解输入数据的哪些方面驱动了网络的决策。在现实世界中,人类需要根据输出的dna做出可操作的决定。这种决策支持系统可以在关键领域找到,如立法、执法等。重要的是,做出高层决策的人员能够确保DNN决策是由数据特征的组合驱动的,这些数据特征在决策支持系统的部署上下文中是适当的,并且所做的决策在法律上或伦理上是可辩护的。由于DNN技术发展的惊人速度,解释DNN决策过程的新方法和研究已经发展成为一个活跃的研究领域。在定义什么是能够解释深度学习系统的行为和评估系统的“解释能力”时所存在的普遍困惑,进一步加剧了这种复杂性。为了缓解这一问题,本文提供了一个“领域指南”,为那些在该领域没有经验的人提供深度学习解释能力指南: i)讨论了研究人员在可解释性研究中增强的深度学习系统的特征,ii)将可解释性放在其他相关的深度学习研究领域的背景下,iii)介绍了定义基础方法空间的三个简单维度。

成为VIP会员查看完整内容
0
36

简介: 机器学习可解释性的新方法以惊人的速度发布。与所有这些保持最新将是疯狂的,根本不可能。这就是为什么您不会在本书中找到最新颖,最有光泽的方法,而是找到机器学习可解释性的基本概念的原因。这些基础知识将为您做好使机器学​​习模型易于理解的准备。

可解释的是使用可解释的模型,例如线性模型或决策树。另一个选择是与模型无关的解释工具,该工具可以应用于任何监督的机器学习模型。与模型不可知的章节涵盖了诸如部分依赖图和置换特征重要性之类的方法。与模型无关的方法通过更改机器学习的输入来起作用建模并测量输出中的变化。

本书将教您如何使(监督的)机器学习模型可解释。这些章节包含一些数学公式,但是即使没有数学知识,您也应该能够理解这些方法背后的思想。本书不适用于尝试从头开始学习机器学习的人。如果您不熟悉机器学习,则有大量书籍和其他资源可用于学习基础知识。我推荐Hastie,Tibshirani和Friedman(2009)撰写的《统计学习的要素》一书和Andrewra Ng在Coursera³上开设的“机器学习”在线课程,着手进行机器学习。这本书和课程都是免费的!在本书的最后,对可解释机器学习的未来前景持乐观态度。

目录:

  • 前言
  • 第一章 引言
  • 第二章 解释性
  • 第三章 数据集
  • 第四章 解释模型
  • 第五章 模型不可知论方法
  • 第六章 基于实例的解释
  • 第七章 神经网络解释
  • 第八章 水晶球
  • 第九章 贡献
  • 第十章 引用本书

成为VIP会员查看完整内容
Interpretable-machine-learning.pdf
0
60

【导读】机器学习大拿Christoph Molnar继推出《可解释机器学习》一著作,进来和他的学生们推出新书可解释机器学习的局限性《Limitations of Interpretable Machine Learning Methods》,阐述了可解释机器学习的概念、方法等,以及重要的是适用的边界,即可解释机器学习的局限,知道能与不能方能用好IML。本书共14章,是Christoph Molnar课题组最新成果,值得参阅。

本书解释了当前可解释机器学习方法的局限性。这些方法包括部分相关图(PDP)、累积局部效应(ALE)、排列特征重要性、单因素协变量缺失(LOCO)和局部可解释模型无关解释(LIME)。所有这些方法都可以用来解释训练过的机器学习模型的行为和预测。但在以下情况下,这些解释方法可能并不适用:

  • 如果模型对交互进行建模(例如,当使用随机森林时)

  • 如果特征之间有很强的相关性

  • 如果模型没有正确地建立因果关系模型

  • 解释方法参数设置不正确的

这本书是“可解释机器学习的局限性”研讨会的成果,该研讨会于2019年夏天在慕尼黑大学统计系举行。

成为VIP会员查看完整内容
0
84

机器学习模型经常被批评是技术黑箱:只要输入数据就能得到正确答案,但却无法对其进行解释。Christoph Molnar在其新书中呼吁大家当前是时候停止将机器学习模型视为黑盒子,在学会运用模型的同时更应去学会分析模型如何做出决策,并给出了将黑盒变得具有可解释性的讨论。

成为VIP会员查看完整内容
0
87
Top