题目: Deep Learning with PyTorch

摘要: 《PyTorch 深度学习》旨在指导人们开始自己的 AI/机器学习开发之路,全书总共只有 5 个章节, PyTorch的深度学习提供了一个详细的、实践性的介绍,介绍了使用PyTorch构建和训练神经网络,PyTorch是一个流行的开源机器学习框架。这本书包括:

  • 深度学习与PyTorch图书馆简介

  • 预训练网络

  • 张量

  • 学习机制

  • 用神经网络拟合数据

第一章是入门内容介绍,主要介绍了什么是 PyTorch和为什么我们要选择 PyTorch,以及对本书内容层次的总体介绍,让刚刚入门的读者能够开门见山,大量的插图介绍了深度学习和Pytorch的概念。

第二章则从张量这一深度学习的基本概念开始,介绍了张量的相关数学机制,以及深度学习是怎样处理数据,完成学习这一过程的。

第三章开始则通过张量和真实世界的数据进行联系,说明了如何使用张量表示表格、时序、图像和文本等数据。

第四章则进入机器学习机制的介绍,说明了深度学习的权重更新和反向传播原理。

第五章主要集中在使用 PyTorch 构建神经网络并拟合数据分布。有了前几章的理论基础,这一章会增加很多代码方面实践介绍。

作者简介:

Eli Stevens过去15年在硅谷做软件工程师,过去7年在一家制造医疗设备软件的初创公司担任首席技术官。

Luca Antiga是位于意大利贝加莫的一家人工智能工程公司的联合创始人兼首席执行官,也是Pythorch的定期撰稿人。

成为VIP会员查看完整内容
Deep-Learning-with-PyTorch.pdf
68+
0+

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

主题: Pytorch与Keras;Beginning Anomaly Detection Using Python-Based Deep Learning

摘要: 利用这本简单易懂的初学者指南,了解如何将深度学习应用于异常检测任务。本书使用Python中的Keras和PyTorch,重点介绍如何将各种深度学习模型应用于半监督和非监督异常检测任务。这本书首先解释了异常检测是什么,它的用途和重要性。在介绍了使用Python中的Scikit Learn进行异常检测的统计和传统机器学习方法之后,本书随后介绍了深度学习,详细介绍了如何在Keras和Pythorch中建立和训练深度学习模型,然后将重点转移到以下深度学习模型的应用到异常检测:各种类型的自动编码器、受限的Boltzmann机器、RNN和LSTM,以及时间卷积网络。这本书探索无监督和半监督异常检测以及基于时间序列的异常检测的基础知识。在这本书的最后,你将有一个全面的了解异常检测的基本任务,以及各种方法来接近异常检测,从传统的方法到深入学习。此外,还向您介绍了Scikit Learn,并能够在Keras和PyTorch中创建深度学习模型。

作者简介: Sridhar Alla是Bluewhale的联合创始人和首席技术官,该公司帮助大大小小的组织构建人工智能驱动的大数据解决方案和分析。他是一位出版书籍的作家,并热衷于在众多阶层、Hadoop世界、Spark Summit和其他会议上发表演讲。他还向美国专利局申请了几项大规模计算和分布式系统的专利。他在Spark、Flink、Hadoop、AWS、Azure、Tensorflow、Cassandra等多个技术领域拥有丰富的实践经验。

Suman KalyanAdari是佛罗里达大学计算机科学学士学位的本科生。他从大一开始就在网络安全领域进行深入的学习研究,并于2019年6月在美国俄勒冈州波特兰举行的关于可靠和安全机器学习的IEEE可靠系统和网络研讨会上发表演讲。

成为VIP会员查看完整内容
32+
0+

简介:

利用先进的架构开发和优化深度学习模型。这本书教你复杂的细节和微妙的算法是卷积神经网络的核心。在高级应用深度学习中,你将学习CNN的高级主题和使用Keras和TensorFlow的对象检测。

在此过程中,将了解CNN中的基本操作,如卷积和池,然后了解更高级的体系结构,如先启网络、resnets等。在本书讨论理论主题的同时,您将通过许多技巧和技巧发现如何有效地使用Keras,包括如何使用自定义回调类自定义登录Keras、什么是即时执行以及如何在模型中使用它。最后,您将研究对象检测如何工作,并在Keras和TensorFlow中构建YOLO算法的完整实现。在这本书的最后,你将在Keras中实现各种各样的模型,并学习到许多将你的技能带到下一个层次的高级技巧。

这本书将会让我们学到:

  • 了解卷积神经网络和对象检测的工作原理
  • 将重量和模型保存在磁盘上
  • 暂停训练,稍后再重新开始
  • 在代码中使用硬件加速(gpu)
  • 使用数据集TensorFlow抽象并使用预训练模型和传输学习
  • 删除和添加层到预先训练的网络,以适应您的具体项目
  • 将预先训练好的模型(如Alexnet和VGG16)应用于新数据集

作者:

Umberto Michelucci,TOELT llc的创始人,该公司专注于人工智能科学研究。同样是数值模拟、统计学、数据科学和机器学习方面的专家。多年来,他不断拓展研究生课程和研究项目的专业知识。除了在乔治华盛顿大学(美国)和奥格斯堡大学(DE)有几年的研究经验,他还有15年的数据库、数据科学和机器学习的实践经验。他目前在Helsana Versicherung AG公司负责深度学习、新技术和研究。

成为VIP会员查看完整内容
16+
0+
Top