题目: Deep Learning with PyTorch

摘要: 《PyTorch 深度学习》旨在指导人们开始自己的 AI/机器学习开发之路,全书总共只有 5 个章节, PyTorch的深度学习提供了一个详细的、实践性的介绍,介绍了使用PyTorch构建和训练神经网络,PyTorch是一个流行的开源机器学习框架。这本书包括:

  • 深度学习与PyTorch图书馆简介

  • 预训练网络

  • 张量

  • 学习机制

  • 用神经网络拟合数据

第一章是入门内容介绍,主要介绍了什么是 PyTorch和为什么我们要选择 PyTorch,以及对本书内容层次的总体介绍,让刚刚入门的读者能够开门见山,大量的插图介绍了深度学习和Pytorch的概念。

第二章则从张量这一深度学习的基本概念开始,介绍了张量的相关数学机制,以及深度学习是怎样处理数据,完成学习这一过程的。

第三章开始则通过张量和真实世界的数据进行联系,说明了如何使用张量表示表格、时序、图像和文本等数据。

第四章则进入机器学习机制的介绍,说明了深度学习的权重更新和反向传播原理。

第五章主要集中在使用 PyTorch 构建神经网络并拟合数据分布。有了前几章的理论基础,这一章会增加很多代码方面实践介绍。

作者简介:

Eli Stevens过去15年在硅谷做软件工程师,过去7年在一家制造医疗设备软件的初创公司担任首席技术官。

Luca Antiga是位于意大利贝加莫的一家人工智能工程公司的联合创始人兼首席执行官,也是Pythorch的定期撰稿人。

成为VIP会员查看完整内容
0
170

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

简介:

自从2012年以来,最近的技术史上最重大的事件也许就是神经网络爆炸了。标记数据集的增长,计算能力的提高以及算法的创新齐头并进。从那时起,深度神经网络使以前无法实现的任务得以实现,并提高了任务的准确性,使它们超出了学术研究范围,并进入了语音识别,图像标记,生成模型和推荐系统等领域的实际应用。在这种背景下,Google Brain的团队开始开发TensorFlow.js。该项目开始时,许多人认为“ JavaScript深度学习”是一种新颖事物,对于某些用例来说并不能当真。尽管Python已经有了一些完善的,功能强大的深度学习框架,但JavaScript机器学习的前景仍然是零散的和不完整的。在当时可用的少数JavaScript库中,大多数仅支持以其他语言(通常是Python)进行预训练的部署模型。

这本书不仅是作为如何在TensorFlow.js中编写代码的秘诀,而且还是以JavaScript和Web开发人员的母语为基础的机器学习基础入门课程。深度学习领域是一个快速发展的领域。我们相信,无需正式的数学处理就可以对机器学习有深入的了解,而这种了解将使您能够在技术的未来发展中保持最新。有了这本书,您就成为成为成长中的JavaScript机器学习从业人员社区的第一步,他们已经在JavaScript和深度学习之间的交汇处带来了许多有影响力的应用程序。我们衷心希望本书能激发您在这一领域的创造力和独创性。

目录:

内容简介:

本书分为四个部分。第一部分仅由第一章组成,向您介绍了人工智能,机器学习和深度学习的概况,以及在JavaScript中实践深度学习为何有意义。第二部分是对深度学习中最基础和最常遇到的概念的简要介绍。本书的第三部分系统地为希望建立对更前沿技术的理解的用户,提供了深度学习的高级主题,重点是ML系统的特定挑战领域以及与之配合使用的TensorFlow.js工具。

成为VIP会员查看完整内容
0
18

书名: Deep Learning for Search

简介:

深度学习搜索是一本实用的书,关于如何使用(深度)神经网络来帮助建立有效的搜索引擎。这本书研究了一个搜索引擎的几个组成部分,提供了关于它们如何工作的见解以及如何在每个环境中使用神经网络的指导。重点介绍了基于实例的实用搜索和深度学习技术,其中大部分都有代码。同时,在适当的地方提供相关研究论文的参考资料,以鼓励阅读更多的书籍,加深对特定主题的知识。

读完这本书,将对搜索引擎的主要挑战有所理解,它们是如何被普遍解决的以及深度学习可以做些什么来帮助。并且将对几种不同的深度学习技术以及它们在搜索环境中的适用范围有一个理解,将很好地了解Lucene和Deeplearning4j库。

这本书主要分为3个部分:

  • 第1部分介绍了搜索、机器学习和深度学习的基本概念。第一章介绍了应用深度学习技术来搜索问题的原理,涉及了信息检索中最常见的方法。第2章给出了如何使用神经网络模型从数据中生成同义词来提高搜索引擎效率的第一个例子。

  • 第2部分讨论了可以通过深度神经网络更好地解决的常见搜索引擎任务。第3章介绍了使用递归神经网络来生成用户输入的查询。第四章在深度神经网络的帮助下,在用户输入查询时提供更好的建议。第5章重点介绍了排序模型:尤其是如何使用词嵌入提供更相关的搜索结果。第6章讨论了文档嵌入在排序函数和内容重新编码上下文中的使用。

  • 第3部分将介绍更复杂的场景,如深度学习机器翻译和图像搜索。第7章通过基于神经网络的方法为你的搜索引擎提供多语言能力来指导你。第8章讨论了基于内容的图像集合的搜索,并使用了深度学习模型。第9章讨论了与生产相关的主题,如微调深度学习模型和处理不断输入的数据流。

作者简介:

Tommaso Teofili是一名软件工程师,他对开源机器学习充满热情。作为Apache软件基金会的成员,他为许多开放源码项目做出了贡献,从信息检索到自然语言处理和机器翻译等主题。他目前在Adobe工作,开发搜索和索引基础结构组件,并研究自然语言处理、信息检索和深度学习等领域。他曾在各种会议上发表过搜索和机器学习方面的演讲,包括BerlinBuzzwords、计算科学国际会议、ApacheCon、EclipseCon等。

成为VIP会员查看完整内容
0
92
小贴士
相关论文
L^2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You,Tianlong Chen,Zhangyang Wang,Yang Shen
6+阅读 · 3月30日
Wenwu Zhu,Xin Wang,Peng Cui
15+阅读 · 1月2日
Deep Learning for Energy Markets
Michael Polson,Vadim Sokolov
3+阅读 · 2019年4月10日
Hardness-Aware Deep Metric Learning
Wenzhao Zheng,Zhaodong Chen,Jiwen Lu,Jie Zhou
5+阅读 · 2019年3月13日
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks
Kun Xu,Lingfei Wu,Zhiguo Wang,Yansong Feng,Michael Witbrock,Vadim Sheinin
6+阅读 · 2018年12月3日
Training Generative Adversarial Networks Via Turing Test
Jianlin Su
3+阅读 · 2018年10月25日
Keyulu Xu,Weihua Hu,Jure Leskovec,Stefanie Jegelka
13+阅读 · 2018年10月1日
Ignasi Clavera,Anusha Nagabandi,Ronald S. Fearing,Pieter Abbeel,Sergey Levine,Chelsea Finn
6+阅读 · 2018年3月30日
Jiaxuan You,Rex Ying,Xiang Ren,William L. Hamilton,Jure Leskovec
4+阅读 · 2018年2月24日
Michael Opitz,Georg Waltner,Horst Possegger,Horst Bischof
13+阅读 · 2018年1月15日
Top