### 相关内容

“机器学习是近20多年兴起的一门多领域交叉学科，涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律，并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论，机器学习与统计推断学联系尤为密切，也被称为统计学习理论。算法设计方面，机器学习理论关注可以实现的，行之有效的学习算法。很多 推论问题属于 无程序可循难度，所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

### 更多

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

1. 概述

1.1 大景观：分解理论

1.2 文章结构

AutoML: A Survey of the State-of-the-Art

We present a traffic simulation named DeepTraffic where the planning systems for a subset of the vehicles are handled by a neural network as part of a model-free, off-policy reinforcement learning process. The primary goal of DeepTraffic is to make the hands-on study of deep reinforcement learning accessible to thousands of students, educators, and researchers in order to inspire and fuel the exploration and evaluation of deep Q-learning network variants and hyperparameter configurations through large-scale, open competition. This paper investigates the crowd-sourced hyperparameter tuning of the policy network that resulted from the first iteration of the DeepTraffic competition where thousands of participants actively searched through the hyperparameter space.

46+阅读 · 2019年5月3日
AI研习社
4+阅读 · 2019年4月17日
AI100
30+阅读 · 2019年3月17日

3+阅读 · 2017年12月25日

3+阅读 · 2017年10月11日

10+阅读 · 2017年8月25日

Tong Yu,Hong Zhu
12+阅读 · 2020年3月12日
Ruoyu Sun
78+阅读 · 2019年12月19日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
3+阅读 · 2019年4月25日
H. Ismail Fawaz,G. Forestier,J. Weber,L. Idoumghar,P. Muller
8+阅读 · 2019年3月14日
Tuomas Haarnoja,Aurick Zhou,Sehoon Ha,Jie Tan,George Tucker,Sergey Levine
4+阅读 · 2018年12月26日
Benjamin Recht
5+阅读 · 2018年6月25日