多目标跟踪(MOT)的问题在于在一个序列中跟踪不同目标的轨迹,通常是视频。近年来,随着深度学习的兴起,为这一问题提供解决方案的算法受益于深度模型的表示能力。本文对利用深度学习模型解决单摄像机视频MOT任务的作品进行了全面的综述。提出了MOT算法的四个主要步骤,并对深度学习在每个阶段的应用进行了深入的回顾。本文还对三种MOTChallenge数据集上的现有工作进行了完整的实验比较,确定了一些最优的方法之间的相似性,并提出了一些可能的未来研究方向。

成为VIP会员查看完整内容
0
52

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

目标检测和数据关联是多目标跟踪系统的关键组成部分。尽管这两个组件高度依赖于彼此,但MOT中的一个流行趋势是将检测和数据关联作为单独的模块执行,并按级联顺序处理。由于这种级联过程,所生成的MOT系统只能执行前向推理,而不能将错误反向传播到整个管道并进行纠正。这导致整个管道的性能低于最佳水平。为了解决这个问题,最近的工作联合优化了检测和数据关联,并形成了一个综合的MOT方法,已被证明提高了检测和跟踪的性能。为此,我们提出了一种基于图神经网络(GNNs)的联合MOT方法。该方法的关键思想是,GNNs能够在空间和时间域内显式地建模多个目标之间的复杂交互,这对于学习识别特征进行检测和数据关联至关重要。我们还利用了运动特征与外观特征一起使用时对MOT有用这一事实。因此,我们提出的联合MOT方法也将外观和运动特征纳入我们的基于图的特征学习框架,从而使MOT更好地学习特征。在MOT挑战数据集上的大量实验表明,我们提出的方法在目标检测和MOT检测上都取得了最先进的性能。

成为VIP会员查看完整内容
0
26

摘要:近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.本文探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集.最后,对表面缺陷检测的未来发展趋势进行了展望.

成为VIP会员查看完整内容
0
35

智能视频监控(IVS)是当前计算机视觉和机器学习领域的一个活跃研究领域,为监控操作员和取证视频调查者提供了有用的工具。人的再识别(PReID)是IVS中最关键的问题之一,它包括识别一个人是否已经通过网络中的摄像机被观察到。PReID的解决方案有无数的应用,包括检索显示感兴趣的个体的视频序列,甚至在多个摄像机视图上进行行人跟踪。文献中已经提出了不同的技术来提高PReID的性能,最近研究人员利用了深度神经网络(DNNs),因为它在类似的视觉问题上具有令人信服的性能,而且在测试时执行速度也很快。鉴于再识别解决方案的重要性和广泛的应用范围,我们的目标是讨论在该领域开展的工作,并提出一项最先进的DNN模型用于这项任务的调查。我们提供了每个模型的描述以及它们在一组基准数据集上的评估。最后,我们对这些模型进行了详细的比较,并讨论了它们的局限性,为今后的研究提供了指导。

成为VIP会员查看完整内容
0
43

论文题目: Deep Learning in Video Multi-Object Tracking: A Survey

论文摘要: 多目标跟踪(MOT)的问题在于遵循序列中不同对象(通常是视频)的轨迹。 近年来,随着深度学习的兴起,提供解决此问题的算法得益于深度模型的表示能力。 本文对采用深度学习模型解决单摄像机视频中的MOT任务的作品进行了全面的调查。 确定了MOT算法的四个主要步骤,并对这些阶段的每个阶段如何使用深度学习进行了深入的回顾。 还提供了对三个MOT数据集上提出的作品的完整实验比较,确定了表现最好的方法之间的许多相似之处,并提出了一些可能的未来研究方向。

成为VIP会员查看完整内容
0
58

题目: A survey of deep learning techniques for autonomous driving

简介: 本文目的是研究自动驾驶中深度学习技术的最新技术。首先介绍基于AI的自动驾驶架构、CNN和RNN、以及DRL范例。这些方法为驾驶场景感知、路径规划、行为决策和运动控制算法奠定基础。该文研究深度学习方法构建的模块化“感知-规划-执行”流水线以及将传感信息直接映射到转向命令的端到端系统。此外,设计自动驾驶AI架构遇到的当前挑战,如安全性、训练数据源和计算硬件等也进行了讨论。该工作有助于深入了解深度学习和自动驾驶AI方法的优越性和局限性,并协助系统的设计选择。

成为VIP会员查看完整内容
0
33

题目: Deep Learning in Video Multi-Object Tracking: A Survey

简介: 多对象跟踪(MOT)的问题在于遵循序列中不同对象(通常是视频)的轨迹。 近年来,随着深度学习的兴起,提供解决此问题的算法得益于深度模型的表示能力。 本文对采用深度学习模型解决单摄像机视频中的MOT任务的作品进行了全面的调查。 确定了MOT算法的四个主要步骤,并对这些阶段的每个阶段如何使用深度学习进行了深入的回顾。 还提供了对三个MOTChallenge数据集上提出的作品的完整实验比较,确定了表现最好的方法之间的许多相似之处,并提出了一些可能的未来研究方向。

成为VIP会员查看完整内容
DEEP LEARNING IN VIDEO MULTI-OBJECT TRACKING.pdf
0
28
小贴士
相关论文
Mamdouh Farouk
5+阅读 · 2019年10月6日
Deep Learning in Video Multi-Object Tracking: A Survey
Gioele Ciaparrone,Francisco Luque Sánchez,Siham Tabik,Luigi Troiano,Roberto Tagliaferri,Francisco Herrera
32+阅读 · 2019年7月31日
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
Anna Rohrbach,Lisa Anne Hendricks,Kaylee Burns,Trevor Darrell,Kate Saenko
3+阅读 · 2019年3月29日
Deep Node Ranking: an Algorithm for Structural Network Embedding and End-to-End Classification
Blaž Škrlj,Jan Kralj,Janez Konc,Marko Robnik-Šikonja,Nada Lavrač
4+阅读 · 2019年2月11日
Wenhan Luo,Peng Sun,Fangwei Zhong,Wei Liu,Tong Zhang,Yizhou Wang
3+阅读 · 2018年6月1日
Pengpeng Liang,Yifan Wu,Hu Lu,Liming Wang,Chunyuan Liao,Haibin Ling
4+阅读 · 2018年5月22日
Jinsoo Choi,Tae-Hyun Oh,In So Kweon
4+阅读 · 2018年3月1日
Kevin Taylor-Sakyi
3+阅读 · 2016年1月15日
Top