简介: 该研讨会的主要目标是双重的。 首先是对可视化问答和可视对话的进度进行基准测试。本次研讨会的第二个目标是将对可视化问答,对话系统和语言感兴趣的研究人员聚集在一起,以共享最新技术和未来方向。 除了邀请知名研究人员发表演讲包括:视觉问题解答,视觉对话,(文字)问题解答,(文字)对话系统,常识性知识, 视觉+语言等。

部分嘉宾介绍: Christopher Manning,SAIL 新任负责人,Christopher Manning于1989年在澳大利亚国立大学取得三个学士学位(数学、计算机和语言学),并于 1994 年获得斯坦福大学语言学博士学位。 他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。重返斯坦福之后,他一待就是 19 年。 Manning 的研究目标是以智能的方式实现人类语言的处理、理解及生成,研究领域包括树形 RNN 、情感分析、基于神经网络的依存句法分析、神经机器翻译和深度语言理解等,是一位 NLP 领域的深度学习开拓者。他是国际计算机学会 (ACM)、国际人工智协会(AAAI)、国际计算语言学会(ACL)等国际权威学术组织的 Fellow,曾获 ACL、EMNLP、COLING、CHI 等国际顶会最佳论文奖,著有《统计自然语言处理基础》、《信息检索导论》等自然语言处理著名教材。

Karl Moritz Hermann,DeepMind的研究科学家。 在此之前,曾担任过Dark Blue Labs的首席执行官。 在进入行业之前,是牛津大学CLG的计算语言学和机器学习的博士后研究员,并在Stephen Pulman和Phil Blunsom的指导下完成了DPhil。 研究方向是ML和CL、 自然语言理解,并且正在尝试通过对基础语言习得的研究来在这一领域取得进展。

成为VIP会员查看完整内容
0
9

相关内容

问答系统(Question Answering System, QA)是信息检索系统的一种高级形式,它能用准确、简洁的自然语言回答用户用自然语言提出的问题。其研究兴起的主要原因是人们对快速、准确地获取信息的需求。问答系统是目前人工智能和自然语言处理领域中一个倍受关注并具有广泛发展前景的研究方向。

预先训练词嵌入是NLP深度学习成功的关键,因为它们允许模型利用web上几乎无限数量的未注释文本。在过去的几年里,条件语言模型被用来生成预先训练好的上下文表示,这比简单的嵌入更加丰富和强大。本文介绍了一种新的预训练技术——BERT(来自Transformer的双向编码器表示),它可以生成深度双向的预训练语言表示。BERT在斯坦福问答数据集、多项、斯坦福情感树库和许多其他任务上获得了最先进的结果。

Jacob Devlin是谷歌的研究员。在谷歌,他的主要研究兴趣是开发用于信息检索、问题回答和其他语言理解任务的快速、强大和可扩展的深度学习模型。2014年至2017年,他在微软研究院担任首席研究员,领导微软翻译从基于短语的翻译过渡到神经机器翻译(NMT)。他获得了ACL 2014最佳长论文奖和NAACL 2012最佳短论文奖。2009年,他在马里兰大学(University of Maryland)获得了计算机科学硕士学位,导师是邦尼·多尔(Bonnie Dorr)博士。

成为VIP会员查看完整内容
0
34

题目: Multimodal Model Agnostic Meta-Learning via Task-Aware Modulation

简介:

模型不可知元学习者的目标是从相似的任务中获取元学习参数,以适应分布相同但梯度更新较少的新任务。由于模型选择的灵活性,这些框架在诸如少镜头图像分类和增强学习等多个领域表现出了良好的性能。然而,此类框架的一个重要限制是,它们寻求在整个任务分布中共享的公共初始化,这极大地限制了它们能够学习的任务分布的多样性。在本文中,我们增强了MAML的能力,以识别从多模式任务分布中采样的任务模式,并通过梯度更新快速适应。具体来说,我们提出了一个多模态MAML框架,该框架能够根据所识别的模式调整其元学习先验参数,从而实现更高效的快速适应。我们在一组不同的少镜头学习任务上对所提出的模型进行评估,包括回归、图像分类和强化学习。结果不仅证明了我们的模型在调整元学习先验以响应任务特征方面的有效性,而且表明了多模态分布的训练比单模态训练有更好的效果。

邀请嘉宾:

Risto Vuorio是密歇根大学Satinder Singh实验室的访问学者,致力于深度强化学习和终身学习,对开发新的增强学习算法并将其应用于新问题很感兴趣。

Shao-Hua Sun是南加利福尼亚大学(USC)计算机科学专业的三年级博士生,与Joseph J. Lim教授一起在视觉与机器人认知学习实验室(CLVR)担任Annenberg研究员。在加入USC之前,在国立台湾大学(NTU)电子工程系获得学士学位。研究兴趣横跨深度学习、计算机视觉、强化学习、元学习、机器人学习等领域。

成为VIP会员查看完整内容
0
13

课程名称: CS276: Information Retrieval and Web Search(Spring quarter 2019

课程简介: 信息检索(Information Retrieval)是用户进行信息查询和获取的主要方式,是查找信息的方法和手段。 IR是自然语言处理(NLP)领域中的第一个,并且仍然是最重要的问题之一。 网络搜索是将信息检索技术应用于世界上最大的文本语料库-网络-这是大多数人最频繁地与IR系统交互的区域。

在本课程中,我们将介绍构建基于文本的信息系统的基本和高级技术,包括以下主题:

  • 高效的文本索引
  • 布尔和向量空间检索模型
  • 评估和界面问题
  • Web的IR技术,包括爬网,基于链接的算法和元数据使用
  • 文档聚类和分类
  • 传统和基于机器学习的排名方法

讲师介绍: Christopher Manning,SAIL 新任负责人,Christopher Manning于1989年在澳大利亚国立大学取得三个学士学位(数学、计算机和语言学),并于 1994 年获得斯坦福大学语言学博士学位。 他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。重返斯坦福之后,他一待就是 19 年。 Manning 的研究目标是以智能的方式实现人类语言的处理、理解及生成,研究领域包括树形 RNN 、情感分析、基于神经网络的依存句法分析、神经机器翻译和深度语言理解等,是一位 NLP 领域的深度学习开拓者。他是国际计算机学会 (ACM)、国际人工智协会(AAAI)、国际计算语言学会(ACL)等国际权威学术组织的 Fellow,曾获 ACL、EMNLP、COLING、CHI 等国际顶会最佳论文奖,著有《统计自然语言处理基础》、《信息检索导论》等自然语言处理著名教材。

Pandu Nayak,谷歌工程师,负责信息检索方面的研究。 在加入Google之前,我曾是Stratify,Inc.的首席架构师和首席技术官。在那里,帮助开发了成功的Stratify Legal Discovery服务。

成为VIP会员查看完整内容
0
26

报告主题:Recent Breakthroughs in Natural Language Processing

报告摘要:自然语言处理是计算机科学、语言学和机器学习的交叉点,它关注计算机与人类之间使用自然语言中的沟通交流。总之,NLP致力于让计算机能够理解和生成人类语言。NLP技术应用于多个领域,比如天猫精灵和Siri这样的语音助手,还有机器翻译和文本过滤等。机器学习是受NLP影响最深远的领域之一,尤为突出的是深度学习技术。该领域分为以下三个部分:语音识别、自然语言理解、自然语言生成。本次报告结合NLP的最新突破,分别剖析不同领域的研究进展,并对未来的研究方向作出简单概述。

邀请嘉宾:Christopher Manning,SAIL 新任负责人,于1989年在澳大利亚国立大学取得三个学士学位(数学、计算机和语言学),并于 1994 年获得斯坦福大学语言学博士学位。 他曾先后在卡内基梅隆大学、悉尼大学等任教,1999 年回到母校斯坦福,就职于计算机科学和语言学系,是斯坦福自然语言处理组(Stanford NLP Group)的创始成员及负责人。重返斯坦福之后,他一待就是 19 年。

Manning 的研究目标是以智能的方式实现人类语言的处理、理解及生成,研究领域包括树形 RNN 、情感分析、基于神经网络的依存句法分析、神经机器翻译和深度语言理解等,是一位 NLP 领域的深度学习开拓者。他是国际计算机学会 (ACM)、国际人工智协会(AAAI)、国际计算语言学会(ACL)等国际权威学术组织的 Fellow,曾获 ACL、EMNLP、COLING、CHI 等国际顶会最佳论文奖,著有《统计自然语言处理基础》、《信息检索导论》等自然语言处理著名教材。

成为VIP会员查看完整内容
2019-10-31-02-01-Christopher-Manning.pdf
0
5

题目: Visual Recognition and Beyond

报告简介: 本教程涵盖了视觉识别研究前沿的主题。 我们将讨论来自图像和视频的实例级识别的最新进展,详细介绍视觉识别任务系列中的最新工作。 讲座涵盖了图像分类,视频分类,对象检测,动作检测,实例分割,语义分割,全景分割和姿势估计背后的方法和原理。

报告目录:

  • 目标检测与实例分割
  • 全局分割: Task and Approaches
  • 2D图像预测3D形状
  • 视频分类与检测

嘉宾介绍:

Ross Girshick,是Facebook人工智能研究(FAIR)的一名研究科学家,致力于计算机视觉和机器学习。2012年,他在Pedro Felzenszwalb的指导下获得了芝加哥大学的计算机科学博士学位。加入FAIR之前,罗斯曾在微软研究院(Microsoft Research)、雷德蒙(Redmond)和加州大学伯克利分校(University of California, Berkeley)做研究员,他的兴趣包括实例级别的对象理解和将自然语言处理与计算机视觉相结合的视觉推理挑战。他获得了2017年PAMI青年研究员奖,并以开发R-CNN(基于区域的卷积神经网络)方法来检测对象而闻名。2017年,还凭借《面具R-CNN》在ICCV获得马尔奖。

Justin Johnson,斯坦福大学博士,导师是计算机视觉领域顶级学者李飞飞博士。研究兴趣包括计算机视觉和机器学习方面,涉及到视觉推理、视觉和语言,以及使用深层神经网络生成图像。Johnson目前是Facebook AI Research的研究科学家。从2019年秋季开始,我将加入密歇根大学计算机科学与工程专业,担任助理教授。Johnson在2018年夏天完成博士学位,其博士论文组成式视觉智能《Compositional visual intelligence》,195页详述采用组合式学习的方法对计算机视觉中图像描述、视觉问答、文本图像生成三方面的问题进行了研究,是组合式视觉智能的代表性研究工作。

成为VIP会员查看完整内容
0
14
小贴士
相关VIP内容
相关论文
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
3+阅读 · 2019年4月10日
CoQA: A Conversational Question Answering Challenge
Siva Reddy,Danqi Chen,Christopher D. Manning
6+阅读 · 2018年8月21日
Reciprocal Attention Fusion for Visual Question Answering
Moshiur R Farazi,Salman H Khan
4+阅读 · 2018年7月22日
Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Will Norcliffe-Brown,Efstathios Vafeias,Sarah Parisot
3+阅读 · 2018年7月5日
Pei Guo,Connor Anderson,Kolten Pearson,Ryan Farrell
6+阅读 · 2018年5月23日
Minghao Hu,Yuxing Peng,Zhen Huang,Xipeng Qiu,Furu Wei,Ming Zhou
9+阅读 · 2018年4月25日
Mantong Zhou,Minlie Huang,Xiaoyan Zhu
10+阅读 · 2018年1月15日
Diksha Khurana,Aditya Koli,Kiran Khatter,Sukhdev Singh
4+阅读 · 2017年8月17日
Top