简介:
探索用Python编写代码的正确方法。这本书提供的技巧和技术,你需要生产更干净,无错误,和雄辩的Python项目。
要获得更好的代码,首先要理解对代码进行格式化和编制文档以获得最大可读性的重要性,利用内置的数据结构和Python字典来提高可维护性,并使用模块和元类来有效地组织代码。然后,您将深入了解Python语言的新特性,并学习如何有效地利用它们。接下来,您将解码关键概念,如异步编程、Python数据类型、类型提示和路径处理。学习在Python代码中调试和执行单元测试和集成测试的技巧,以确保您的代码可以投入生产。学习旅程的最后一段为您提供了版本管理、实时代码管理和智能代码完成的基本工具。 在阅读和使用这本书之后,您将熟练地编写干净的Python代码,并成功地将这些原则应用到您自己的Python项目中。
目录:
作者:
Sunil Kapil在过去十年一直从事软件行业,用Python和其他几种语言编写产品代码。 他曾是一名软件工程师,主要从事网络和移动服务的后端工作。他开发、部署并维护了数百万用户喜爱和使用的从小型到大型的生产项目。他与世界各地知名软件公司的大小团队在不同的专业环境中完成了这些项目。他也是开源的热情倡导者,并不断为Zulip Chat和Black等项目贡献力量。Sunil经常在各种会议上发表关于Python的演讲。
首先加速介绍R生态系统、编程语言和工具,包括R脚本和RStudio。通过使用许多例子和项目,这本书教你如何将数据导入R,以及如何使用R处理这些数据。一旦基础扎实,《实用R 4》的其余部分将深入具体的项目和例子,从使用R和LimeSurvey运行和分析调查开始。接下来,您将使用R和MouselabWeb执行高级统计分析。然后,您将看到在没有统计信息的情况下R如何工作,包括如何使用R自动化数据格式化、操作、报告和自定义函数。
本书的最后一部分讨论了在服务器上使用R;您将使用R构建一个脚本,该脚本可以运行RStudio服务器并监视报表源的更改,以便在发生更改时向用户发出警报。这个项目包括定期电子邮件提醒和推送通知。最后,您将使用R创建一个定制的个人最重要信息的每日纲要报告,例如天气报告、每日日历、待办事项等等。这演示了如何自动化这样一个过程,以便用户每天早上导航到相同的web页面并获得更新的报告。
你将学到什么
这本书是给谁的
理解并实施panda的大数据分析解决方案,强调性能。本书通过探索其底层实现和数据结构,增强了您使用Python数据分析库pandas的直觉。
《Pandas 编程思想》介绍了大数据的主题,并通过观看pandas帮助解决的激动人心和有影响力的项目来展示概念。从那里,您将学习按大小和类型评估您自己的项目,以确定pandas是否适合您的需要。作者Hannah Stepanek解释了如何在pandas中有效地加载和规范化数据,并回顾了一些最常用的加载器和它们的几个最强大的选项。然后,您将了解如何有效地访问和转换数据,应该避免哪些方法,以及何时使用更高级的性能技术。您还将学习基本的数据访问、学习panda和直观的字典语法。此外,还讨论了如何选择正确的DataFrame格式、使用多层次的DataFrame以及将来如何改进panda。
在本书结束时,您将对pandas库的底层工作原理有一个牢固的理解。准备好用正确的方法在你自己的项目中做出自信的决定。
你将学到什么
这本书是给谁的
机器学习已经成为许多商业应用和研究项目中不可或缺的一部分,但这一领域并不仅限于拥有广泛研究团队的大公司。如果您使用Python,即使是初学者,这本书也会教你构建自己的机器学习解决方案的实用方法。今天,有了所有可用的数据,机器学习应用程序只受限于你的想象力。
您将学习使用Python和scikit-learn库创建成功的机器学习应用程序所需的步骤。两位作者安德烈亚斯•穆勒(Andreas Muller)和萨拉•圭多(Sarah Guido)关注的是使用机器学习算法的实践层面,而不是背后的数学。熟悉NumPy和matplotlib库将有助于您从本书获得更多信息。
通过这本书,你会学到 :
从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。
本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。
这个版本包括:
简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。
您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。
从数据科学的角度研究Python,并学习用于做出关键业务决策的数据可视化的成熟技术。从介绍Python的数据科学开始,您将进一步了解Python环境,并熟悉Jupyter Notebook和Spyder等编辑器。通过Python编程入门之后,您将掌握数据科学中使用的基本Python编程技术。接下来是数据可视化,您将看到它如何满足现代业务需求并形成决策的关键因素。您还将了解Python中一些流行的数据可视化库。
将重点转移到数据结构,您将从数据科学的角度了解数据结构的各个方面。然后使用Python处理文件I/O和正则表达式,然后收集和清理数据。继续探索和分析数据,您将看到Python中的高级数据结构。然后,您将深入研究数据可视化技术,了解Python中的许多绘图系统。
最后,您将完成一个详细的案例研究,您将有机会重温到目前为止介绍的概念。
你会学到什么
这本书是给谁看的
具有基本Python编程知识的开发人员希望采用使用Python进行数据分析和可视化的关键策略。
改进您的编程技术和方法,成为一个更有生产力和创造性的Python程序员。本书探索了一些概念和特性,这些概念和特性不仅将改进您的代码,而且还将帮助您理解Python社区,并对Python哲学有深入的了解和详细的介绍。
专业的Python 3,第三版给你的工具写干净,创新的代码。它首先回顾了一些核心的Python原则,这些原则将在本书后面的各种概念和示例中进行说明。本书的前半部分探讨了函数、类、协议和字符串的各个方面,描述了一些技术,这些技术可能不是常见的知识,但它们共同构成了坚实的基础。后面的章节涉及文档、测试和应用程序分发。在此过程中,您将开发一个复杂的Python框架,该框架将整合在本书中所学到的思想。
这个版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup进行web抓取、使用请求调用没有字符串的web页面、用于分发和安装的新工具等等。在本书的最后,您将准备好部署不常见的特性,这些特性可以将您的Python技能提升到下一个级别。
你将学习
这本书是给谁看的 熟悉Python的中级程序员,希望提升到高级水平。您应该至少编写了一个简单的Python应用程序,并且熟悉基本的面向对象方法、使用交互式解释器和编写控制结构。
Python算法,第二版解释了Python方法的算法分析和设计。本书由《初级Python》的作者Magnus Lie Hetland撰写,主要关注经典算法,但也对基本的算法解决问题技术有了深入的理解。
这本书涉及一些最重要和最具挑战性的领域的编程和计算机科学在一个高度可读的方式。它涵盖了算法理论和编程实践,演示了理论是如何反映在真实的Python程序中的。介绍了Python语言中内置的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构
本书作者BrettSlatkin以使用场景为主导的精练教学方式,汇聚了59条优秀的实践原则、开发技巧和便捷方案,并以实用的代码范例来解释它们。作者根据自己在Google公司多年开发Python基础架构所积累的经验,揭示了Python语言中一些鲜为人知的微妙特性,并给出了能够改善代码功能及运行效率的习惯用法。通过本书,你能够了解到解决关键编程任务所用的佳方式,并学会编写易于理解、便于维护且利于改进的代码。
本书可以帮你掌握真正的Pythonic编程方式,令你能够发挥出Python语言的强大功能,并写出健壮而高效的代码。Scott Meyers在畅销书《Effective C++》中开创了一种以使用场景为主导的精练教学方式,本书作者Brett Slatkin就以这种方式汇聚了59条优秀的实践原则、开发技巧和便捷方案,并以实用的代码范例来解释它们。
Slatkin根据自己在Google公司多年开发Python基础架构所积累的经验,揭示Python语言中一些鲜为人知的微妙特性,并给出了能够改善代码功能及运行效率的习惯用法。通过本书,你能够了解到解决关键编程任务所用的方式,并学会编写易于理解、便于维护且利于改进的代码。本书核心内容包括:
● 涵盖Python 3.x及Python 2.x主要应用领域的实用指南,以及与之配套的详细解释及代码范例。
● 与函数相关的编程建议,这些建议有助于我们写出意图清晰、便于复用且缺陷较少的函数。
● 如何准确地表达类与对象的行为。
● 在使用元类和动态属性时,如何避免错误的用法。
● 更为高效的并发及并行方式。
● 与Python内置模块相关的编程技巧和习惯用法。
● 多人协作时所用的开发工具和实践方式。
● 旨在改善代码质量和程序性能的调试、测试与优化方案。
https://www.manning.com/books/mastering-large-datasets-with-python
现代数据科学解决方案需要简洁、易于阅读和可伸缩。在《用Python掌握大型数据集》一书中,作者J.T. Wolohan向您介绍了如何使用Python编码的功能影响方法来处理小型项目并对其进行扩展。您将探索有助于清晰性和可伸缩性的方法和内置Python工具,比如高性能并行方法,以及支持高数据吞吐量的分布式技术。本实用教程中丰富的实践练习将为任何大型数据科学项目锁定这些基本技能。
对这项技术
当应用于大量文件或分布式数据集时,在笔记本大小的数据上运行良好的编程技术可能会变慢,甚至完全失败。通过掌握强大的map和reduce范型,以及支持它的基于python的工具,您可以编写以数据为中心的应用程序,这些应用程序可以有效地扩展,而不需要在需求发生变化时重写代码库。
关于这本书
使用Python掌握大型数据集教会您编写可以处理任何大小的数据集的代码。您将从笔记本大小的数据集开始,这些数据集通过将大任务分解为可以同时运行的小任务来教会您并行化数据分析。然后将这些程序扩展到云服务器集群上的工业级数据集。有了map和reduce范型,您将探索像Hadoop和PySpark这样的工具来有效地处理大量的分布式数据集,使用机器学习加速决策制定,并使用AWS S3简化数据存储。
里面有什么
对map和reduce范例的介绍
并行化与多处理模块框架
分布式计算的Hadoop和Spark
运行AWS作业来处理大型数据集