改进您的编程技术和方法,成为一个更有生产力和创造性的Python程序员。本书探索了一些概念和特性,这些概念和特性不仅将改进您的代码,而且还将帮助您理解Python社区,并对Python哲学有深入的了解和详细的介绍。

专业的Python 3,第三版给你的工具写干净,创新的代码。它首先回顾了一些核心的Python原则,这些原则将在本书后面的各种概念和示例中进行说明。本书的前半部分探讨了函数、类、协议和字符串的各个方面,描述了一些技术,这些技术可能不是常见的知识,但它们共同构成了坚实的基础。后面的章节涉及文档、测试和应用程序分发。在此过程中,您将开发一个复杂的Python框架,该框架将整合在本书中所学到的思想。

这个版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup进行web抓取、使用请求调用没有字符串的web页面、用于分发和安装的新工具等等。在本书的最后,您将准备好部署不常见的特性,这些特性可以将您的Python技能提升到下一个级别。

你将学习

  • 用各种类型的Python函数实现程序
  • 使用类和面向对象编程
  • 使用标准库和第三方库中的字符串
  • 使用Python获取web站点数据
  • 通过编写测试套件来自动化单元测试
  • 回顾成像、随机数生成和NumPy科学扩展
  • 理解Python文档的精髓,以帮助您决定分发代码的最佳方式

这本书是给谁看的 熟悉Python的中级程序员,希望提升到高级水平。您应该至少编写了一个简单的Python应用程序,并且熟悉基本的面向对象方法、使用交互式解释器和编写控制结构。

成为VIP会员查看完整内容
0
123

相关内容

Python的3.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0在设计的时候没有考虑向下兼容。

在不同的编程环境中理解和使用高级C#最重要的特性。这本书教你高级C#的基本特性,以及如何使用Visual Studio 2019将它们合并到不同的编程技术中。

这本书分为两部分。第一部分介绍了c#高级编程的基本原理和要点。您将了解委托和事件,然后转向lambda表达式。第二部分将介绍如何用不同的编程技术实现这些特性,首先从泛型编程开始。之后,您将学习线程编程和异步编程,以便从多线程环境中获益。最后,您将学习使用ADO进行数据库编程。你将知道如何通过你的c#应用程序执行SQL语句和存储过程。

你将学到什么

  • 在高级编程中使用委托、事件和lambda表达式
  • 利用泛型使应用程序更加灵活
  • 创建一个使用多线程和异步编程的快速应用程序
  • 在Visual Studio Community Edition中工作,这是使用c#最常见的IDE
  • 理解替代实现及其优缺点

这本书是给谁的

  • 已经在使用c#的开发人员和程序员
成为VIP会员查看完整内容
0
32

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
123

从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。

本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。

这个版本包括:

  • Python语法、面向对象的Python、标准库模块和第三方Python包
  • Python对文件和文本操作、持久性和数据库、并发执行和数值计算的支持
  • 网络基础、事件驱动编程和客户端网络协议模块
  • Python扩展模块,以及用于打包和分发扩展、模块和应用程序的工具
成为VIP会员查看完整内容
0
110

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
113

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
90

这本教科书解释的概念和技术需要编写的程序,可以有效地处理大量的数据。面向项目和课堂测试,这本书提出了一些重要的算法,由例子支持,给计算机程序员面临的问题带来意义。计算复杂性的概念也被介绍,演示什么可以和不可以被有效地计算,以便程序员可以对他们使用的算法做出明智的判断。特点:包括介绍性和高级数据结构和算法的主题,与序言顺序为那些各自的课程在前言中提供; 提供每个章节的学习目标、复习问题和编程练习,以及大量的说明性例子; 在相关网站上提供可下载的程序和补充文件,以及作者提供的讲师资料; 为那些来自不同的语言背景的人呈现Python的初级读本。

成为VIP会员查看完整内容
0
93

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
112

Manning2020新书《Practices of the Python Pro》,250页pdf

专业开发人员知道编写干净、组织良好、易于维护的应用程序代码的许多好处。通过学习和遵循已建立的模式和最佳实践,您可以将您的代码和您的职业生涯提升到一个新的水平。

通过Python Pro的实践,您将学习如何使用非常流行的编程语言Python来设计专业级别的、干净的、易于维护的软件。您会发现一些容易理解的示例,它们使用伪代码和Python来介绍软件开发的最佳实践,以及许多即时有用的技术,可以帮助您像专业人员一样编写代码。

Python Pro的实践教会您设计和编写可理解、可维护和可扩展的专业质量的软件。Dane Hillard是一名Python专业人员,他帮助许多开发人员完成了这一步,并且他知道这需要什么。通过一些有用的示例和练习,他可以告诉您何时、为什么以及如何模块化代码,如何通过减少复杂性来提高质量,等等。接受这些核心原则,您的代码将变得更容易阅读、维护和重用。

成为VIP会员查看完整内容
0
112

简介:

探索用Python编写代码的正确方法。这本书提供的技巧和技术,你需要生产更干净,无错误,和雄辩的Python项目。

要获得更好的代码,首先要理解对代码进行格式化和编制文档以获得最大可读性的重要性,利用内置的数据结构和Python字典来提高可维护性,并使用模块和元类来有效地组织代码。然后,您将深入了解Python语言的新特性,并学习如何有效地利用它们。接下来,您将解码关键概念,如异步编程、Python数据类型、类型提示和路径处理。学习在Python代码中调试和执行单元测试和集成测试的技巧,以确保您的代码可以投入生产。学习旅程的最后一段为您提供了版本管理、实时代码管理和智能代码完成的基本工具。 在阅读和使用这本书之后,您将熟练地编写干净的Python代码,并成功地将这些原则应用到您自己的Python项目中。

目录:

  • Pythonic思维
  • 数据结构
  • 编写更好的函数和类
  • 使用模块和元类
  • 装饰器和上下文管理器
  • 生成器和迭代器
  • 利用新的Python特性
  • 附录:一些很棒的Python工具

作者:

Sunil Kapil在过去十年一直从事软件行业,用Python和其他几种语言编写产品代码。 他曾是一名软件工程师,主要从事网络和移动服务的后端工作。他开发、部署并维护了数百万用户喜爱和使用的从小型到大型的生产项目。他与世界各地知名软件公司的大小团队在不同的专业环境中完成了这些项目。他也是开源的热情倡导者,并不断为Zulip Chat和Black等项目贡献力量。Sunil经常在各种会议上发表关于Python的演讲。

成为VIP会员查看完整内容
1
103

简介:

科学专业人员可以通过本书学习Scikit-Learn库以及机器学习的基础知识。该书将Anaconda Python发行版与流行的Scikit-Learn库结合在一起,展示了各种有监督和无监督的机器学习算法。通过Python编写的清晰示例向读者介绍机器学习的原理,以及相关代码。

本书涵盖了掌握这些内容所需的所有应用数学和编程技能。不需要深入的面向对象编程知识,因为可以提供并说明完整的示例。必要时,编码示例很深入且很复杂。它们也简洁,准确,完整,是对引入的机器学习概念的补充。处理示例有助于建立理解和应用复杂机器学习算法所需的技能。

本书的学生将学习作为胜任力前提的基础知识。读者将了解专门为数据科学专业人员设计的Python Anaconda发行版,并将在流行的Scikit-Learn库中构建技能,该库是Python领域许多机器学习应用程序的基础。

本书内容包括:

  • 使用Scikit-Learn通用的简单和复杂数据集
  • 将数据处理为向量和矩阵以进行算法处理
  • 熟悉数据科学中使用的Anaconda发行版
  • 通过分类器,回归器和降维应用机器学习
  • 调整算法并为每个数据集找到最佳算法
  • 从CSV,JSON,Numpy和Pandas格式加载数据并保存

内容介绍:

这本书分为八章。 第1章介绍了机器学习,Anaconda和Scikit-Learn的主题。 第2章和第3章介绍算法分类。 第2章对简单数据集进行分类,第3章对复杂数据集进行分类。 第4章介绍了回归预测模型。 第5章和第6章介绍分类调整。 第5章调整简单数据集,第6章调整复杂数据集。 第7章介绍了预测模型回归调整。 第8章将所有知识汇总在一起,以整体方式审查和提出发现。

作者介绍:

David Paper博士是犹他州立大学管理信息系统系的教授。他写了两本书-商业网络编程:Oracle的PHP面向对象编程和Python和MongoDB的数据科学基础。他在诸如组织研究方法,ACM通讯,信息与管理,信息资源管理期刊,AIS通讯,信息技术案例与应用研究期刊以及远程计划等参考期刊上发表了70余篇论文。他还曾在多个编辑委员会担任过各种职务,包括副编辑。Paper博士还曾在德州仪器(TI),DLS,Inc.和凤凰城小型企业管理局工作。他曾为IBM,AT&T,Octel,犹他州交通运输部和空间动力实验室执行过IS咨询工作。 Paper博士的教学和研究兴趣包括数据科学,机器学习,面向对象的程序设计和变更管理。

目录:

成为VIP会员查看完整内容
0
64
小贴士
相关VIP内容
专知会员服务
32+阅读 · 2020年6月26日
专知会员服务
123+阅读 · 2020年6月10日
专知会员服务
110+阅读 · 2020年5月21日
专知会员服务
113+阅读 · 2020年5月17日
专知会员服务
93+阅读 · 2020年3月4日
专知会员服务
112+阅读 · 2020年2月11日
【书籍推荐】简洁的Python编程(Clean Python),附274页pdf
专知会员服务
103+阅读 · 2020年1月1日
相关资讯
Python 3.8.0来了!
数据派THU
5+阅读 · 2019年10月22日
这可能是学习Python最好的免费在线电子书
程序猿
34+阅读 · 2018年5月17日
Python为啥这么牛?
Python程序员
3+阅读 · 2018年3月30日
快乐的迁移到 Python3
Python程序员
4+阅读 · 2018年3月25日
这几本Python新书特别赞
图灵教育
5+阅读 · 2018年3月1日
2017年度图灵最受欢迎Python图书TOP10
图灵教育
4+阅读 · 2017年12月22日
Python 书单:从入门到……
Linux中国
11+阅读 · 2017年8月6日
相关论文
Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang
65+阅读 · 2020年2月5日
The Theory behind Controllable Expressive Speech Synthesis: a Cross-disciplinary Approach
Noé Tits,Kevin El Haddad,Thierry Dutoit
3+阅读 · 2019年10月14日
Yingtian Zou,Jiashi Feng
6+阅读 · 2019年4月19日
IRLAS: Inverse Reinforcement Learning for Architecture Search
Minghao Guo,Zhao Zhong,Wei Wu,Dahua Lin,Junjie Yan
4+阅读 · 2018年12月14日
Marek Rei,Anders Søgaard
3+阅读 · 2018年11月14日
Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning
Chi Nhan Duong,Kha Gia Quach,Khoa Luu,T. Hoang Ngan Le,Marios Savvides,Tien D. Bui
3+阅读 · 2018年9月4日
Artem Sevastopolsky,Stepan Drapak,Konstantin Kiselev,Blake M. Snyder,Anastasia Georgievskaya
3+阅读 · 2018年4月30日
Kuang-Huei Lee,Xi Chen,Gang Hua,Houdong Hu,Xiaodong He
3+阅读 · 2018年3月21日
Top