知识表示和推理是人工智能挑战的核心: 要充分理解智能和认知的本质,使计算机能够表现出类似人类的能力。早在1958年,约翰·麦卡锡(John McCarthy)就考虑过可以运用常识的人工智能系统。从这些早期工作中,研究人员确信(人工)智能可以被形式化为具有明确知识表征的符号推理,而研究的核心挑战是弄清楚如何在计算机中表示知识,并使用它的算法来解决问题。

多年以后,这本书调研了构成知识表示和推理领域的大量科学和工程见解。在三个方面取得了进展。首先,研究人员探索了知识表示和推理的一般方法,解决了跨越应用领域的基本问题。其次,研究人员开发了专门的知识表示和推理方法来处理核心领域,如时间、空间、因果关系和行动。第三,研究人员处理了知识表示和推理的重要应用,包括查询回答、规划和语义网。因此,本书分为三个部分来涵盖这些主题。

https://www.elsevier.com/books/handbook-of-knowledge-representation/van-harmelen/978-0-444-52211-5

第一部分主要介绍人工智能系统中表示知识的一般方法。它从经典逻辑和定理证明的背景开始,然后转向扩展经典逻辑的新方法——例如,处理定性的或不确定的信息——并改进其计算可处理性。

  • 第一章通过调研自动化推理的经典逻辑和方法,为后面章节提供了背景知识。
  • 第二章描述了可满足性(SAT)求解器的显著成功。研究人员发现,这类自动推理可以用于越来越多的实际应用,而且效率惊人。
  • 第三章回顾了描述逻辑的研究,提供了用术语知识表示和推理的方法。描述逻辑是语义Web表示语言的核心。
  • 第四章描述了约束规划,一个解决组合搜索问题的强大范例。这种类型的知识表示和推理结合了来自人工智能、运筹学、算法和图论的广泛技术。
  • 第五章回顾了在概念图方面有影响的研究。这种结构化的表示提供了一种表达性语言和强大的推理方法,这对于自然语言理解等应用程序是必不可少的。
  • 第六章介绍了非单调逻辑,它处理与处理一般规则异常相关的复杂问题。这些逻辑被称为“非单调”,因为它们描述了当考虑到额外的异常时从知识库撤回信息的情况。
  • 第七章建立在上一章的基础上,描述了答案集逻辑,它巧妙地处理了默认规则和例外,以及它们所产生的非单调推理。这种逻辑形式也支持关于行为的因果效应的推理——常识的另一个关键特征。
  • 第八章通过对信念修正技术的调查继续了这个主题,也就是说,一个主体是如何根据与之前的信念相矛盾的新信息改变其知识库的。
  • 第九章解释了连续系统定性模型的作用。这些模型实现了常识的另一个关键特征: 使用不完整信息进行推理。这种推理形式可以计算,例如,一个系统可能的未来状态,这是重要的许多任务,如诊断和辅导。
  • 第十章证明了这些理论和技术为问题解决者建立了基础,这些解决者利用系统行为的明确模型来完成诸如设计、测试和诊断等任务。这种基于模型的问题解决器以基本原理知识和具有正式逻辑基础的推理引擎为基础,而不是与特定实例和情况相关联的经验,实现了知识表示和推理技术的工业应用所需的能力和健壮性。
  • 第十一章直面现实世界领域中不可避免的不确定性问题,并调查了贝叶斯网络作为一种建模和基于不确定信念进行推理的方法的广泛研究。

第二部分探讨了用知识的一些核心领域(包括时间、空间、因果关系和行动)来表示和推理的特殊挑战。这些挑战在应用程序领域中普遍存在,因此解决方案必须是通用的和可组合的。

  • 第十二章讨论了如何表示一个不断变化的时序世界。在这个贯穿本节的主题中,这提出了各种有趣的本体论问题——比如时间应该用点还是间隔来建模,以及在什么层次上粒度化——以及这些决定的实际后果。
  • 第十三章调研了空间的定性表示,包括拓扑、方向、形状、大小和距离,以及适用于每个空间的推理方法。虽然没有单一的理论涵盖这些主题全面,研究人员已经产生了一个强大的工具包。
  • 第十四章建立在前两章的基础上,并对定性建模进行了研究,以解决一般的物理推理问题。发展了两个重要的领域理论(液体和固体),并探讨了在替代模型之间转换的关键问题。
  • 第十五章调研了一个主体的知识和信念的表现,包括关于其他主体的知识状态的命题(例如,“汤姆相信玛丽知道……”)。这种工作可以很好地扩展到在智能体社区中处理公共知识和分布式知识。
  • 第十六章考察了“情境演算”的悠久历史——为处理动态世界而设计的知识表示。麦卡锡和海斯首先定义的情形是“宇宙在某一时刻的完整状态”。因为情境是可以被量化的一阶对象,这个框架已经被证明是关于变化的推理的一个强有力的基础。
  • 第十七章描述了事件演算作为一种情景演算的替代,它具有一些额外的好特性。特别是,事件演算有助于表示连续事件、不确定性影响、持续时间事件、触发事件等等。
  • 第十八章通过引入时态动作逻辑,继续开发为动态世界设计的表示语言。这个语言家族特别适合于推理持久性,也就是说,世界上的特性会随着时间的推移而不变,直到一个动作影响到它们。它简化了不确定性动作、有持续时间的动作、并发动作和动作的延迟效果的表示,部分原因是它使用了显式时间,并且它将自动计划器与形式主义紧密地结合在一起。
  • 第十九章关注于非单调因果逻辑,它使用框架问题的强解决方案来处理动态世界。这一逻辑始于这样的假设:每件事都有一个原因:要么是先前的动作,要么是惯性(持久性)。这导致了一些关键问题的很好的形式化,比如分支、隐含的操作前提条件和操作的并发交互影响。

第三部分介绍了知识表示和推理的重要应用。应用领域涵盖了人工智能的广度,包括问题回答、语义网、计划、机器人和多智能体系统。每一项应用都广泛借鉴了第一部分和第二部分中所述的研究结果。

  • 第二十章调研了问答系统。这些系统会回答相关文档的问题,在某些情况下,还会回答常识信息的知识库。该系统的挑战是选择相关的文本段落(一个信息检索任务),解释它们(一个自然语言理解任务)和推断问题的答案(一个推理任务)。
  • 第二十一章回顾了语义网的发展:万维网的一个扩展,在它的内容是用一种正式的语言表达的,使软件代理能够发现、整合和推理它。这带来了许多挑战,包括将知识表示方法缩放到Web的大小。
  • 第二十二章调查了自动化规划的进展,这使得这些系统比早期人工智能的“经典规划”更加强大。例如,新框架支持不确定性操作和部分可观察性,这是现实领域的重要属性。
  • 第二十三章将知识表示和推理扩展到一个新的方向:认知机器人。这一应用的挑战在于,机器人的世界是动态的、不完全已知的,这需要重新思考传统的人工智能任务方法,比如规划,以及耦合高级推理和低级感知。
  • 第二十四章对多智能体系统的研究进行了调查,其中每个智能体代表和推理环境中的其他智能体是很重要的。当代理有不同的,或者更糟的——冲突的目标时,这就特别具有挑战性。
  • 第二十五章描述了知识工程的工具和技术:如何获得可以用其他章节中描述的形式来表达的知识。

此外,这25章,组织在三个部分“一般方法”,“专门的表示和“应用”,提供了一个独特的调研,最好的知识表示已经取得,由帮助塑造领域的研究人员写。我们希望学生,研究人员和从业者在所有领域的人工智能和认知科学将发现这本书是一个有用的资源。

成为VIP会员查看完整内容
0
47

相关内容

知识表示(knowledge representation)是指把知识客体中的知识因子与知识关联起来,便于人们识别和理解知识。知识表示是知识组织的前提和基础,任何知识组织方法都是要建立在知识表示的基础上。知识表示有主观知识表示和客观知识表示两种。

有很多关于傅里叶变换的书; 然而,很少有面向多学科读者的。为工程师写一本关于代数概念的书是一个真正的挑战,即使不是太难的事,也要比写一本关于理论应用的代数书更有挑战性。这就是本书试图面对的挑战。因此,每个读者都能够创建一个“按菜单”的程序,并从语句或计算机程序中提取特定元素,以建立他们在该领域的知识,或将其运用于更具体的问题。

本文叙述是非常详细的。读者可能偶尔需要一些关于有限组的高级概念,以及对组行为的熟悉程度。我强调了那些重要的定义和符号。例如,从多个角度(交换群、信号处理、非交换群)研究卷积的概念,每次都要放在它的背景知识中。因此,不同的段落,虽然遵循一个逻辑递进,有一个真正的统一,但可以根据自己需要选取阅读。

第一章用群论的语言来解释主要概念,并解释后面将用到的符号。第二章将所得结果应用于各种问题,并首次接触快速算法(例如Walsh 变换)。第三章对离散傅里叶变换进行了阐述。第四章介绍了离散傅里叶变换的各种应用,并构成了对前一章的必要补充,以充分理解所涉及的机制以及在实际情况中使用。第五章围绕傅里叶变换提出了更多新颖的思想和算法,产生了大量的应用。第六章需要一些更高级的知识,特别是对有限场理论的一些熟悉。它研究了有限域中的值变换,并给出了在校正码中的应用。最后两章(最困难的一章),具有更多的代数性质,并建议推广已经在有限非交换群的情况下进行的构造。第七章揭示了线性表示的理论。第八章和最后一章将这一理论应用于理论(群的简洁性研究)和实际(光谱分析)领域。

https://mathematical-tours.github.io/daft/

成为VIP会员查看完整内容
0
20

不确定性的概念在机器学习中是非常重要的,并且构成了现代机器学习方法论的一个关键元素。近年来,由于机器学习与实际应用的相关性越来越大,它的重要性也越来越大,其中许多应用都伴随着安全要求。在这方面,机器学习学者们发现了新的问题和挑战,需要新的方法发展。事实上,长期以来,不确定性几乎被视为标准概率和概率预测的同义词,而最近的研究已经超越了传统的方法,也利用了更一般的形式主义和不确定性计算。例如,不确定性的不同来源和类型之间的区别,例如任意不确定性和认知不确定性,在许多机器学习应用中被证明是有用的。讲习班将特别注意这方面的最新发展。

综述论文:

不确定性的概念在机器学习中是非常重要的,并且构成了机器学习方法的一个关键元素。按照统计传统,不确定性长期以来几乎被视为标准概率和概率预测的同义词。然而,由于机器学习与实际应用和安全要求等相关问题的相关性稳步上升,机器学习学者最近发现了新的问题和挑战,而这些问题可能需要新的方法发展。特别地,这包括区分(至少)两种不同类型的不确定性的重要性,通常被称为任意的和认知的。在这篇论文中,我们提供了机器学习中的不确定性主题的介绍,以及到目前为止在处理一般不确定性方面的尝试的概述,并特别将这种区别形式化。

https://www.zhuanzhi.ai/paper/8329095368761f81a7849fe5457949ed

成为VIP会员查看完整内容
0
33

这个新版本提供了一个全面的,丰富多彩的,最新的的人工智能导论,还包括理论基础。它包括大量的例子,应用程序,全彩图像,和人类兴趣盒,以提高学生的兴趣。关于机器人技术和机器学习的新章节现在包括在内。高级主题包括神经网络、遗传算法、自然语言处理、规划和复杂的棋类游戏。

成为VIP会员查看完整内容
0
30

随着谷歌知识图谱、DBpedia、微软 Concept Graph、YAGO 等众多知识图谱的不断出现, 根据 RDF 来构建的知识表达体系越来越为人们所熟知. 利用 RDF 三元组表达形式成为人们对现实世界中 知识的基本描述方式, 由于其结构简单、逻辑清晰, 所以易于理解和实现, 但也因为如此, 当其面对现 实中无比繁杂的知识和很多常识时, 往往也无法做到对知识的认识面面俱到, 知识图谱的构建过程注 定会使其中包含的知识不具有完整性, 即知识库无法包含全部的已知知识. 此时知识库补全技术在应 对此种情形时就显得尤为重要, 任何现有的知识图谱都需要通过补全来不断完善知识本身, 甚至可以 推理出新的知识. 本文从知识图谱构建过程出发, 将知识图谱补全问题分为概念补全和实例补全两个 层次: (1) 概念补全层次主要针对实体类型补全问题, 按照基于描述逻辑的逻辑推理机制、基于传统机 器学习的类型推理机制和基于表示学习的类型推理机制等 3 个发展阶段展开描述; (2) 实例补全层次 又可以分为 RDF 三元组补全和新实例发现两个方面, 本文主要针对 RDF 三元组补全问题沿着统计 关系学习、基于随机游走的概率学习和知识表示学习等发展阶段来阐述实体补全或关系补全的方法. 通过对以上大规模知识图谱补全技术研究历程、发展现状和最新进展的回顾与探讨, 最后提出了未来 该技术需要应对的挑战和相关方向的发展前景.

成为VIP会员查看完整内容
0
32

在本文中,我们对知识图谱进行了全面的介绍,在需要开发多样化、动态、大规模数据收集的场景中,知识图谱最近引起了业界和学术界的极大关注。在大致介绍之后,我们对用于知识图谱的各种基于图的数据模型和查询语言进行了归纳和对比。我们将讨论模式、标识和上下文在知识图谱中的作用。我们解释如何使用演绎和归纳技术的组合来表示和提取知识。我们总结了知识图谱的创建、丰富、质量评估、细化和发布的方法。我们将概述著名的开放知识图谱和企业知识图谱及其应用,以及它们如何使用上述技术。最后,我们总结了未来高层次的知识图谱研究方向。

尽管“知识图谱”一词至少从1972年就开始出现在文献中了[440],但它的现代形式起源于2012年发布的谷歌知识图谱[459],随后Airbnb[83]、亚马逊[280]、eBay[392]、Facebook[365]、IBM[123]、LinkedIn[214]、微软[457]、优步[205]等公司相继发布了开发知识图谱的公告。事实证明,学术界难以忽视这一概念的日益普及: 越来越多的科学文献发表关于知识图谱的主题,其中包括书籍(如[400]),以及概述定义(如[136])的论文,新技术(如[298,399,521]),以及对知识图谱具体方面的调查(如[375,519])。

所有这些发展的核心思想是使用图形来表示数据,通常通过某种方式显式地表示知识来增强这种思想[365]。结果最常用于涉及大规模集成、管理和从不同数据源提取价值的应用场景[365]。在这种情况下,与关系模型或NoSQL替代方案相比,使用基于图的知识抽象有很多好处。图为各种领域提供了简洁而直观的抽象,其中边捕获了社会数据、生物交互、书目引用和合作作者、交通网络等[15]中固有实体之间的(潜在的循环)关系。图允许维护者推迟模式的定义,允许数据(及其范围)以比关系设置中通常可能的更灵活的方式发展,特别是对于获取不完整的知识[2]。与(其他)NoSQL模型不同,专门的图形查询语言不仅支持标准的关系运算符(连接、联合、投影等),而且还支持递归查找通过任意长度路径[14]连接的实体的导航运算符。标准的知识表示形式主义——如本体论[66,228,344]和规则[242,270]——可以用来定义和推理用于标记和描述图中的节点和边的术语的语义。可伸缩的图形分析框架[314,478,529]可用于计算中心性、集群、摘要等,以获得对所描述领域的洞察。各种表示形式也被开发出来,支持直接在图上应用机器学习技术[519,527]。

总之,构建和使用知识图谱的决策为集成和从不同数据源提取价值提供了一系列技术。但是,我们还没有看到一个通用的统一总结,它描述了如何使用知识图谱,使用了哪些技术,以及它们如何与现有的数据管理主题相关。

本教程的目标是全面介绍知识图谱: 描述它们的基本数据模型以及如何查询它们;讨论与schema, identity, 和 context相关的表征;讨论演绎和归纳的方式使知识明确;介绍可用于创建和充实图形结构数据的各种技术;描述如何识别知识图谱的质量以及如何改进知识图谱;讨论发布知识图谱的标准和最佳实践;并提供在实践中发现的现有知识图谱的概述。我们的目标受众包括对知识图谱不熟悉的研究人员和实践者。因此,我们并不假设读者对知识图谱有特定的专业知识。

知识图。“知识图谱”的定义仍然存在争议[36,53,136],其中出现了一些(有时相互冲突的)定义,从具体的技术建议到更具包容性的一般性建议;我们在附录a中讨论了这些先前的定义。在这里,我们采用了一个包容性的定义,其中我们将知识图谱视为一个数据图,目的是积累和传递真实世界的知识,其节点表示感兴趣的实体,其边缘表示这些实体之间的关系。数据图(又称数据图)符合一个基于图的数据模型,它可以是一个有向边标记的图,一个属性图等(我们在第二节中讨论具体的替代方案)。这些知识可以从外部资源中积累,也可以从知识图谱本身中提取。知识可以由简单的语句组成,如“圣地亚哥是智利的首都”,也可以由量化的语句组成,如“所有的首都都是城市”。简单的语句可以作为数据图的边来积累。如果知识图谱打算积累量化的语句,那么就需要一种更有表现力的方式来表示知识——例如本体或规则。演绎的方法可以用来继承和积累进一步的知识(例如,“圣地亚哥是一个城市”)。基于简单或量化语句的额外知识也可以通过归纳方法从知识图谱中提取和积累。

知识图谱通常来自多个来源,因此,在结构和粒度方面可能非常多样化。解决这种多样性, 表示模式, 身份, 和上下文常常起着关键的作用,在一个模式定义了一个高层结构知识图谱,身份表示图中哪些节点(或外部源)引用同一个真实的实体,而上下文可能表明一个特定的设置一些单位的知识是真实的。如前所述,知识图谱需要有效的提取、充实、质量评估和细化方法才能随着时间的推移而增长和改进。

在实践中 知识图谱的目标是作为组织或社区内不断发展的共享知识基础[365]。在实践中,我们区分了两种类型的知识图谱:开放知识图谱和企业知识图谱。开放知识图谱在网上发布,使其内容对公众有好处。最突出的例子——DBpedia[291]、Freebase[51]、Wikidata[515]、YAGO[232]等——涵盖了许多领域,它们要么是从Wikipedia[232,291]中提取出来的,要么是由志愿者社区[51,515]建立的。开放知识图谱也在特定领域内发表过,如媒体[406]、政府[222,450]、地理[472]、旅游[11,263,308,540]、生命科学[79]等。企业知识图谱通常是公司内部的,并应用于商业用例[365]。使用企业知识图谱的著名行业包括网络搜索(如Bing[457]、谷歌[459])、商业(如Airbnb[83]、亚马逊[127、280]、eBay[392]、Uber[205])、社交网络(如Facebook[365]、LinkedIn[214])、金融(如埃森哲[368]、意大利银行[32][326]、彭博[326]、Capital One[65]、富国银行[355])等。应用包括搜索[457,459],推荐[83,205,214,365],个人代理[392],广告[214],商业分析[214],风险评估[107,495],自动化[223],以及更多。我们将在第10节中提供更多关于在实践中使用知识图谱的细节。

结构。本文件其余部分的结构如下:

  • 第2节概述了图形数据模型和可用于查询它们的语言。
  • 第3节描述了知识图谱中模式、标识和上下文的表示形式。
  • 第四节介绍了演绎式的形式主义,通过这种形式主义,知识可以被描述和推导出来。
  • 第5节描述了可以提取额外知识的归纳技术。
  • 第6节讨论了如何从外部资源中创建和丰富知识图谱。
  • 第7节列举了可用于评估知识图谱的质量维度。
  • 第8节讨论知识图谱细化的各种技术。
  • 第9节讨论发布知识图谱的原则和协议。
  • 第10节介绍了一些著名的知识图谱及其应用。
  • 第11节总结了知识图谱的研究概况和未来的研究方向。
  • 附录A提供了知识图谱的历史背景和以前的定义。
  • 附录B列举了将从论文正文中引用的正式定义。
成为VIP会员查看完整内容
0
302
小贴士
相关论文
Hongming Zhang,Daniel Khashabi,Yangqiu Song,Dan Roth
6+阅读 · 5月1日
Hongwei Wang,Hongyu Ren,Jure Leskovec
20+阅读 · 2月17日
Guanglin Niu,Yongfei Zhang,Bo Li,Peng Cui,Si Liu,Jingyang Li,Xiaowei Zhang
6+阅读 · 2019年12月28日
Learning Disentangled Representations for Recommendation
Jianxin Ma,Chang Zhou,Peng Cui,Hongxia Yang,Wenwu Zhu
4+阅读 · 2019年10月31日
Efficiently Embedding Dynamic Knowledge Graphs
Tianxing Wu,Arijit Khan,Huan Gao,Cheng Li
6+阅读 · 2019年10月15日
Rik Koncel-Kedziorski,Dhanush Bekal,Yi Luan,Mirella Lapata,Hannaneh Hajishirzi
3+阅读 · 2019年5月18日
Linjie Li,Zhe Gan,Yu Cheng,Jingjing Liu
4+阅读 · 2019年3月29日
Wen Zhang,Bibek Paudel,Liang Wang,Jiaoyan Chen,Hai Zhu,Wei Zhang,Abraham Bernstein,Huajun Chen
4+阅读 · 2019年3月21日
Wanjun Zhong,Duyu Tang,Nan Duan,Ming Zhou,Jiahai Wang,Jian Yin
5+阅读 · 2018年10月5日
Zhang-Wei Hong,Chen Yu-Ming,Shih-Yang Su,Tzu-Yun Shann,Yi-Hsiang Chang,Hsuan-Kung Yang,Brian Hsi-Lin Ho,Chih-Chieh Tu,Yueh-Chuan Chang,Tsu-Ching Hsiao,Hsin-Wei Hsiao,Sih-Pin Lai,Chun-Yi Lee
4+阅读 · 2018年3月18日
Top