相关内容

和其他主要语言一样,掌握C语言可以带你去一些非常有趣的新地方。在它首次出现近50年后,它仍然是世界上最流行的编程语言,并被用作全球工业核心系统的基础,包括操作系统、高性能图形应用程序和微控制器。这意味着,在尖端产业的尖端领域,如游戏、应用程序开发、电信、工程、甚至动画制作,都需要熟练的C语言用户来将创新的想法转化为顺利运行的现实。

为了帮助您达到使用C语言的目的,第2版《C Programming For Dummies》涵盖了开始编写程序所需的所有内容,从逻辑上指导您完成开发周期:从最初的设计和测试到部署和实时迭代。到最后,您将熟练地掌握干净的编程应该做什么和不应该做什么,并且能够轻松地生成优雅而高效的源代码的基本(或不那么基本)构建块。

编写和编译源代码 链接代码以创建可执行程序 调试和优化您的代码 避免常见的错误

无论你的目的地是科技行业、初创企业,还是只是为了在家消遣而开发,这本易于遵循、内容丰富、有趣的C编程语言指南都是实现这一目标最快、最友好的方式!

http://file.allitebooks.com/20201014/C%20Programming%20For%20Dummies,%202nd%20Edition.epub

成为VIP会员查看完整内容
0
26

本书基于易于理解且具有数据科学相关的丰富的库的Python语言环境,从零开始讲解数据科学工作。具体内容包括:Python速成,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法,等等。作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,详细展示了什么是数据科学。

介绍数据科学基本知识的重量级读本,Google数据科学家作品。

数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。

作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。

  • 简单介绍Python
  • 回顾一下线性几何、统计和概率知识,了解搞数据科学的时候怎么使用它们
  • 收集、探索、清理、转换和操作数据
  • 了解机器学习的基本知识
  • 实现K近邻、朴素贝叶斯、线性及逻辑回归、决策树、神经网络及聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce,还有数据库
成为VIP会员查看完整内容
0
37

Java—从第一步到第一个应用程序

了解Java是任何程序员必须具备的编程技能。它被广泛应用于各种编程项目中——从企业应用和移动应用到大数据、科学和金融应用。根据开发人员的数量、编写的代码行数和实际使用情况,该语言在最流行的语言调查中经常排名第一。它也是美国大学预修计算机科学课程的首选语言

本指南提供了一个易于遵循的路径,从理解编写Java代码的基础知识到将这些技能应用到实际项目中。这本书分为八本涵盖Java核心方面的迷你书,介绍了Java语言和面向对象编程的基础知识,然后开始构建web应用程序和数据库。

  • 了解Java基础知识
  • 探索面向对象编程
  • 学习字符串、数组和集合
  • 了解文件和数据库

一步一步的指导,以确保您不会迷失在任何一点的过程中。

成为VIP会员查看完整内容
0
27

题目 Algorithms in C:C语言算法实现

关键词

算法设计,C语言,编程

简介

本书的目的是研究各种重要且有用的算法:解决适合计算机实现的问题的方法。 我们将处理许多不同的应用领域,始终尝试着重于重要的知识和学习有趣的“基本”算法。 由于涉及的领域和算法众多,因此我们无法深入研究许多方法。 但是,我们将尝试在每种算法上花费足够的时间,以了解其基本特征并尊重其微妙之处。 简而言之,我们的目标是学习当今计算机上使用的大量最重要的算法,并且足以使用和欣赏它们。

要很好地学习算法,必须实现并运行它。 因此,理解本书中介绍的程序的推荐策略是实施和测试它们,尝试使用变体,然后对实际问题进行尝试。 我们将使用C编程语言来讨论和实现大多数算法。 但是,由于我们使用的是语言的较小子集,因此我们的程序可以轻松转换为许多其他现代编程语言。

本书的读者应该至少有一年的高级和低级语言编程经验。 另外,虽然在第3章和第4章中对此材料进行了详细的介绍,但对简单数据结构(如数组,堆栈,队列和T恤)上的基本算法进行一些接触可能会有所帮助,尽管在第3章和第4章中对此材料进行了详细介绍。 还假定了其他基本计算机科学概念。 (我们将在适当的时候简要地回顾这些材料,但始终在解决特定问题的上下文中。)我们处理的一些应用领域需要基本演算的知识。 我们还将使用一些非常基本的材料,包括lin-ear代数,几何和离散数学,但是这些主题的先前知识不是必需的。

目录


成为VIP会员查看完整内容
0
40

Python算法,第二版解释了Python方法的算法分析和设计。本书由《初级Python》的作者Magnus Lie Hetland撰写,主要关注经典算法,但也对基本的算法解决问题技术有了深入的理解。

这本书涉及一些最重要和最具挑战性的领域的编程和计算机科学在一个高度可读的方式。它涵盖了算法理论和编程实践,演示了理论是如何反映在真实的Python程序中的。介绍了Python语言中内置的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构

成为VIP会员查看完整内容
0
106

数据结构和算法的更新、创新方法

这个权威的指南由其领域的专家组成的作者团队编写,它甚至解释了最困难的数学概念,这样您就可以清楚地理解c++中的数据结构和算法。

权威的作者团队采用面向对象的设计范式,使用c++作为实现语言,同时还提供基本算法的直觉和分析。

  • 提供一种独特的多媒体格式,学习基本的数据结构和算法
  • 允许您可视化关键的分析概念,了解该领域的最新见解,并进行数据结构设计
  • 为开发程序提供清晰的方法
  • 具有清晰,易于理解的写作风格,打破了即使是最困难的数学概念

成为VIP会员查看完整内容
0
87

在Python中获得操作、处理、清理和处理数据集的完整说明。本实用指南的第二版针对Python 3.6进行了更新,其中包含了大量的实际案例研究,向您展示了如何有效地解决广泛的数据分析问题。在这个过程中,您将学习最新版本的panda、NumPy、IPython和Jupyter。

本书由Python panda项目的创建者Wes McKinney编写,是对Python中的数据科学工具的实用的、现代的介绍。对于刚接触Python的分析人员和刚接触数据科学和科学计算的Python程序员来说,它是理想的。数据文件和相关材料可以在GitHub上找到。

  • 使用IPython外壳和Jupyter笔记本进行探索性计算
  • 学习NumPy (Numerical Python)中的基本和高级特性
  • 开始使用pandas库的数据分析工具
  • 使用灵活的工具来加载、清理、转换、合并和重塑数据
  • 使用matplotlib创建信息可视化
  • 应用panda groupby工具对数据集进行切片、切割和汇总
  • 分析和处理有规律和不规则的时间序列数据
  • 学习如何解决现实世界的数据分析问题与彻底的,详细的例子
成为VIP会员查看完整内容
0
85

简介: 深度学习无处不在。例如,当在线使用许多应用程序甚至在购物时,都会看到它。我们被深度学习所包围,甚至根本没有意识到这一点,这使学习深度学习变得至关重要,因为可以利用它做很多事情,这远远超出了您的想象。当您学习本书时,您可以在Mac,Linux或Windows系统上运行的许多示例代码。您也可以使用Google Colab之类的工具在线运行代码。 本书的第一部分为您提供了一些入门信息,除了安装一些必备软件,还会了解一些基本数学知识。

目录:

  • 说明

  • Chapter 1:深度学习介绍

    • 深度学习的意义
    • 真实世界中的深度学习
    • 深度学习项目的环境
  • Chapter 2:机器学习介绍

    • 机器学习定义
    • 思考学习的不同方法
    • 机器学习的正确使用
  • Chapter 3:使用python

    • anaconda
    • 下载数据集与代码
    • 创建应用
    • 云端使用
  • chapter 4:利用深度学习看框架

    • 框架介绍
    • 了解tensorflow
  • chapter 5:回顾数学与优化

    • 矩阵介绍
    • 理解向量,scalar等
    • 优化介绍
  • chapter 6:线性回归基础

    • 组合变量
    • 混合变量类型
    • 概率
    • 特征介绍
  • chapter 7:神经网络

    • 感知机
    • 神经网络复杂度
    • 过拟合
  • Chapter 8:构建基础神经网络

    • 理解神经网络
    • 神经网络的核心
  • Chapter 9:深度学习

    • 数据
    • 提升速度
    • 解释深度学习的不同
  • Chapter 10:解释卷积神经网络

  • Chapter 11:循环神经网络

  • Chapter 12:图片分类

  • Chapter 13:循环神经网络

  • Chapter 14:语言处理

  • Chapter 15:生成音乐和虚拟艺术

  • Chapter 16:生成对抗网络

  • Chapter 17:深度强化学习

  • Chapter 18:深度学习的应用

  • Chapter 19:十个必备的深度学习工具

  • Chapter 20:十个使用深度学习的场景

成为VIP会员查看完整内容
0
114
小贴士
相关主题
相关VIP内容
专知会员服务
26+阅读 · 2020年10月15日
专知会员服务
37+阅读 · 2020年9月20日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
40+阅读 · 2020年8月13日
专知会员服务
87+阅读 · 2020年3月27日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
85+阅读 · 2020年3月12日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
114+阅读 · 2019年12月28日
【新书】Python编程基础,669页pdf
专知会员服务
81+阅读 · 2019年10月10日
相关资讯
卷积神经网络从入门到精通
人工智能头条
4+阅读 · 2019年3月29日
下载 | 954页《数据可视化》手册
机器学习算法与Python学习
7+阅读 · 2019年1月3日
下载 | 866页《计算机视觉:原理,算法,应用,学习》第五版
机器学习算法与Python学习
13+阅读 · 2019年1月1日
各编程领域最好的入门书籍
程序猿
11+阅读 · 2018年7月29日
Python 如何快速入门?
大数据技术
9+阅读 · 2018年4月9日
荐书丨Python数据分析从入门到精通
程序人生
7+阅读 · 2018年3月31日
这几本Python新书特别赞
图灵教育
5+阅读 · 2018年3月1日
Python 书单:从入门到……
Linux中国
10+阅读 · 2017年8月6日
相关论文
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
6+阅读 · 2020年5月20日
Invariance-Preserving Localized Activation Functions for Graph Neural Networks
Luana Ruiz,Fernando Gama,Antonio G. Marques,Alejandro Ribeiro
4+阅读 · 2019年11月5日
Fine-grained robust prosody transfer for single-speaker neural text-to-speech
Viacheslav Klimkov,Srikanth Ronanki,Jonas Rohnke,Thomas Drugman
4+阅读 · 2019年7月4日
Recommendation Systems for Tourism Based on Social Networks: A Survey
Alan Menk,Laura Sebastia,Rebeca Ferreira
3+阅读 · 2019年3月28日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Liang Yao,Chengsheng Mao,Yuan Luo
20+阅读 · 2018年11月13日
Automatic multi-objective based feature selection for classification
Zhiguo Zhou,Shulong Li,Genggeng Qin,Michael Folkert,Steve Jiang,Jing Wang
4+阅读 · 2018年7月9日
Sergey Edunov,Myle Ott,Michael Auli,David Grangier,Marc'Aurelio Ranzato
5+阅读 · 2018年5月24日
Kushal Kafle,Brian Price,Scott Cohen,Christopher Kanan
4+阅读 · 2018年3月29日
Jianfeng Dong,Xirong Li,Cees G. M. Snoek
5+阅读 · 2018年1月29日
Top