通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
39

相关内容

了解深度学习,不同模型的细微差别,以及这些模型可以应用的地方。

丰富的数据和对优质产品/服务的需求,推动了先进的计算机科学技术的发展,其中包括图像和语音识别。通过机器学习和深度学习建立在数据科学的基础上,《使用R进行深度学习的介绍》提供了对执行这些任务的模型的理论和实践理解。这个分步指南将帮助您理解这些规程,以便您可以在各种上下文中应用该方法。所有的例子都是用R统计语言教授的,允许学生和专业人员使用开源工具来实现这些技术。

你将学习 理解支持深度学习模型的直觉和数学 利用各种算法使用R编程语言和它的包 使用最佳实践进行实验设计和变量选择 作为一个数据科学家,实践方法来接近和有效地解决问题 评估算法解决方案的有效性并增强其预测能力

这本书是给谁的

熟悉使用R编程的学生、研究人员和数据科学家也可以使用这本书来学习如何在最有用的应用程序中适当地部署这些算法。

成为VIP会员查看完整内容
0
10

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
25

使用Python进行自然语言处理(NLP),学习如何设置健壮环境来执行文本分析。这第二版经历了一个重大的修改,并介绍了几个重要的变化和基于NLP的最新趋势的新主题。

您将了解如何在NLP中使用最新的、最先进的框架,以及机器学习和深度学习模型,用于Python支持的监督情感分析,以解决实际的案例研究。首先回顾Python中关于字符串和文本数据的NLP基础知识,然后讨论文本数据的工程表示方法,包括传统的统计模型和新的基于深度学习的嵌入模型。本文还讨论了解析和处理文本的改进技术和新方法。

文本摘要和主题模型已经全面修订,因此本书展示了如何在NIPS会议论文的兴趣数据集上下文中构建、调整和解释主题模型。此外,这本书涵盖了文本相似性技术与现实世界的电影推荐人的例子,以及情绪分析使用监督和非监督的技术。还有一章专门讨论语义分析,您将了解如何从头构建自己的命名实体识别(NER)系统。虽然该书的整体结构保持不变,但整个代码库、模块和章节都已更新到最新的Python 3。x版本。

你将学习

  • 理解NLP和文本的语法、语义和结构
  • 发现文本清理和功能工程
  • 回顾文本分类和文本聚类
  • 评估文本摘要和主题模型
  • 学习NLP的深度学习

这本书是给谁的

  • IT专业人员、数据分析师、开发人员、语言学专家、数据科学家和工程师,以及任何对语言学、分析和从文本数据中产生见解有浓厚兴趣的人。
成为VIP会员查看完整内容
0
30

从数据科学的角度研究Python,并学习用于做出关键业务决策的数据可视化的成熟技术。从介绍Python的数据科学开始,您将进一步了解Python环境,并熟悉Jupyter Notebook和Spyder等编辑器。通过Python编程入门之后,您将掌握数据科学中使用的基本Python编程技术。接下来是数据可视化,您将看到它如何满足现代业务需求并形成决策的关键因素。您还将了解Python中一些流行的数据可视化库。

将重点转移到数据结构,您将从数据科学的角度了解数据结构的各个方面。然后使用Python处理文件I/O和正则表达式,然后收集和清理数据。继续探索和分析数据,您将看到Python中的高级数据结构。然后,您将深入研究数据可视化技术,了解Python中的许多绘图系统。

最后,您将完成一个详细的案例研究,您将有机会重温到目前为止介绍的概念。

你会学到什么

  • 在数据科学中使用Python编程技术
  • Python中的主数据收集
  • 为BI系统创建引人入胜的可视化
  • 部署收集和清理数据的有效策略
  • 整合Seaborn和Matplotlib绘图系统

这本书是给谁看的

具有基本Python编程知识的开发人员希望采用使用Python进行数据分析和可视化的关键策略。

成为VIP会员查看完整内容
0
51

用科学的分析方法从数据中挖掘出更多的信息

图分析和可视化将图论从实验室带到了现实世界。使用跨越分析功能的复杂方法和工具,本指南向您展示了如何利用图和网络分析技术来发现新的业务见解和机会。全彩出版,这本书描述了创建强大的可视化的过程中使用了丰富和迷人的一组例子,从体育,金融,营销,安全,社会媒体,等等。您将找到模式识别和使用各种数据源(包括大数据)的实用指南,以及关于软件和编程的清晰说明。这个配套的网站提供了数据集、Python中的完整代码示例以及到书中涉及的所有工具的链接。

科学已经从网络和图论中获益,这为物理学、经济学、遗传学等领域的突破提供了动力。本书将这些经过验证的技术引入商业、金融、战略和设计领域,帮助从数据中提取更多的信息,并更好地将结果传达给决策者。

  • *学习使用清晰和富有洞察力的可视化的网络图形示例
  • 分析来自不同行业的特定策划的、易于使用的数据集
  • *学习从数据中提取见解的软件工具和编程语言
  • *使用流行的Python编程语言的代码示例

在网络和图论方面有大量的科学工作,但很少直接应用于核心科学之外的分析功能——直到现在。对于那些寻求经验为基础的,系统的分析方法和强大的工具,适用于实验室之外,图形分析和可视化是一个彻底的,权威的资源。

成为VIP会员查看完整内容
1
66

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
77

这本教科书解释的概念和技术需要编写的程序,可以有效地处理大量的数据。面向项目和课堂测试,这本书提出了一些重要的算法,由例子支持,给计算机程序员面临的问题带来意义。计算复杂性的概念也被介绍,演示什么可以和不可以被有效地计算,以便程序员可以对他们使用的算法做出明智的判断。特点:包括介绍性和高级数据结构和算法的主题,与序言顺序为那些各自的课程在前言中提供; 提供每个章节的学习目标、复习问题和编程练习,以及大量的说明性例子; 在相关网站上提供可下载的程序和补充文件,以及作者提供的讲师资料; 为那些来自不同的语言背景的人呈现Python的初级读本。

成为VIP会员查看完整内容
0
50

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
63
Top