Reinforcement learning agents have been mostly developed and evaluated under the assumption that they will operate in a fully autonomous manner -- they will take all actions. In this work, our goal is to develop algorithms that, by learning to switch control between machine and human agents, allow existing reinforcement learning agents to operate under different automation levels. To this end, we first formally define the problem of learning to switch control among agents in a team via a 2-layer Markov decision process. Then, we develop an online learning algorithm that uses upper confidence bounds on the agents' policies and the environment's transition probabilities to find a sequence of switching policies. We prove that the total regret of our algorithm with respect to the optimal switching policy is sublinear in the number of learning steps. Moreover, we also show that our algorithm can be used to find multiple sequences of switching policies across several independent teams of agents operating in similar environments, where it greatly benefits from maintaining shared confidence bounds for the environments' transition probabilities. Simulation experiments in obstacle avoidance in a semi-autonomous driving scenario illustrate our theoretical findings and demonstrate that, by exploiting the specific structure of the problem, our proposed algorithm is superior to problem-agnostic algorithms.


翻译:强化学习机构大多是在以下假设下开发和评价的:它们将以完全自主的方式运作 -- -- 它们将采取所有行动。在这项工作中,我们的目标是发展算法,通过学习转换机器和人类代理人之间的控制,使现有的强化学习机构能够在不同的自动化水平下运作。为此,我们首先正式确定学习通过一个2层Markov决策程序转换一个团队中的代理人之间的控制的问题。然后,我们开发一个在线学习算法,利用代理人政策和环境过渡可能性的高度信任界限来寻找转换政策的顺序。我们证明,我们对最佳转换政策的算法的完全遗憾是学习步骤数目的次线性。此外,我们还表明,我们的算法可以用来找到在类似环境中运作的若干独立代理人小组之间改变政策的多重顺序,这极大地得益于为环境过渡概率维持共同的信任界限。模拟半自主驱动情景中的障碍避免试验,说明我们的理论结论,并表明,通过利用问题的具体结构,我们提议的算法是优于问题。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2021年4月14日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
1+阅读 · 2021年4月14日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员