We study the quantum umlaut information, a correlation measure defined for bipartite quantum states $\rho_{AB}$ as a reversed variant of the quantum mutual information: $U(A;B)_\rho = \min_{\sigma_B} D(\rho_A\otimes \sigma_B\|\rho_{AB})$ in terms of the quantum relative entropy $D$. As in the classical case [Girardi et al., arXiv:2503.18910], this definition allows for a closed-form expression and has an operational interpretation as the asymptotic error exponent in the hypothesis testing task of deciding whether a given bipartite state is product or not. We generalise the umlaut information to quantum channels, where it also extends the notion of `oveloh information' [Nuradha et al., arXiv:2404.16101]. We prove that channel umlaut information is additive for classical-quantum channels, while we observe additivity violations for fully quantum channels. Inspired by recent results in entanglement theory, we then show as our main result that the regularised umlaut information constitutes a fundamental measure of the quality of classical information transmission over a quantum channel -- as opposed to the capacity, which quantifies the quantity of information that can be sent. This interpretation applies to coding assisted by activated non-signalling correlations, and the channel umlaut information is in general larger than the corresponding expression for unassisted communication as obtained by Dalai for the classical-quantum case [IEEE Trans. Inf. Theory 59, 8027 (2013)]. Combined with prior works on non-signalling--assisted zero-error channel capacities, our findings imply a dichotomy between the settings of zero-rate error exponents and zero-error communication. While our results are single-letter only for classical-quantum channels, we also give a single-letter bound for fully quantum channels in terms of the `geometric' version of umlaut information.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
49+阅读 · 2021年1月6日
Arxiv
25+阅读 · 2019年11月24日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
49+阅读 · 2021年1月6日
Arxiv
25+阅读 · 2019年11月24日
Arxiv
17+阅读 · 2018年4月2日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员