Dense word vectors or 'word embeddings' which encode semantic properties of words, have now become integral to NLP tasks like Machine Translation (MT), Question Answering (QA), Word Sense Disambiguation (WSD), and Information Retrieval (IR). In this paper, we use various existing approaches to create multiple word embeddings for 14 Indian languages. We place these embeddings for all these languages, viz., Assamese, Bengali, Gujarati, Hindi, Kannada, Konkani, Malayalam, Marathi, Nepali, Odiya, Punjabi, Sanskrit, Tamil, and Telugu in a single repository. Relatively newer approaches that emphasize catering to context (BERT, ELMo, etc.) have shown significant improvements, but require a large amount of resources to generate usable models. We release pre-trained embeddings generated using both contextual and non-contextual approaches. We also use MUSE and XLM to train cross-lingual embeddings for all pairs of the aforementioned languages. To show the efficacy of our embeddings, we evaluate our embedding models on XPOS, UPOS and NER tasks for all these languages. We release a total of 436 models using 8 different approaches. We hope they are useful for the resource-constrained Indian language NLP. The title of this paper refers to the famous novel 'A Passage to India' by E.M. Forster, published initially in 1924.


翻译:包含语言语义的刻录式文字矢量或“ 字嵌入”, 将文字的语义特性编码为语言的语义特性, 现在已经成为国家语言方案任务的组成部分, 如机器翻译、 问答、 Word Sense Disamdiguation( WSD) 和信息检索( IR) 。 在本文中, 我们使用各种现有方法为14种印度语言创建多字嵌入。 我们用各种语言, 即 Assamese、 Bengali、 Gulatati、 Indim、 Kannada、 Konkani、 Malyalalam、 Marathi、 Nepali、 Odiya、 Punjai、 Sanskrit、 Tamil 和 Telugu, 在一个单一的存储库中 。 相对新的方法, 重点是要向环境环境( BERT、 ELMo 等) 创建多语言的多词嵌入 。 我们用背景和非外语种语言来发布经过预先训练的嵌入的嵌入 。 我们还使用MUSTE 和 XLM 来培训所有上述语言的文档的交叉嵌入 。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员