In this work, we focus on designing a point local aggregation function that yields parameter efficient networks for 3D point cloud semantic segmentation. We explore the idea of using learnable neighbor-to-grid soft assignment in grid-based aggregation functions. Previous methods in literature operate on a predefined geometric grid such as local volume partitions or irregular kernel points. A more general alternative is to allow the network to learn an assignment function that best suits the end task. Since it is learnable, this mapping is allowed to be different per layer instead of being applied uniformly throughout the depth of the network. By endowing the network with the flexibility to learn its own neighbor-to-grid assignment, we arrive at parameter efficient models that achieve state-of-the-art (SOTA) performance on S3DIS with at least 10$\times$ less parameters than the current reigning method. We also demonstrate competitive performance on ScanNet and PartNet compared with much larger SOTA models.
翻译:在这项工作中,我们侧重于设计一个点点本地聚合功能,为 3D 点云的语义分解生成参数有效网络。 我们探索了在基于网格的聚合函数中使用可学习的邻里至网格软分配的构想。 文献中以往的方法在预先定义的几何网格上运行, 如本地量分区或非常规内核点。 更一般的替代办法是让网络学习最适合最终任务的指派功能。 由于可以学习, 此绘图允许每个层不同, 而不是在整个网络深度统一应用。 通过赋予网络以学习自己的邻里至网格分配的灵活性, 我们到达了在 S3DIS 上实现最先进的( SOTA)性能的参数高效模型, 其参数至少比当前定时法少10美元。 我们还展示了扫描网和 PartNet 的竞争性性能, 与更大的 SOTA 模型相比。