This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. We decompose an input graph into low-pass and high-pass frequencies coefficients for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds high-frequency information at different scales. Compared to ReLU, shrinkage activation improves model performance on denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with well-preserved prediction performance.


翻译:本文介绍了基于框架变换的图形神经网络组装新方法。 后者为图形结构化数据提供了一个多尺度的表达面。 我们将一个输入图形分解成用于网络培训的低通道和高通道频率系数, 从而定义基于框架的图形演变。 框架分解自然会通过将图形特性集成到低通道和高通道光谱中, 将图形特性集成到低通道和高通道光谱中, 同时考虑到图形数据的特征值和几何, 并保存全部信息 。 带有拟议框架变换和汇集在许多节点和图形预测任务中达到最新性能的图形神经网络。 此外, 我们提议缩小为框架变换新激活, 以在不同尺度中设定高频率信息阈值。 与 ReLU 相比, 缩放激活会改善解调和信号压缩的模型性能: 将高通道和结构的噪音精确地从框架变异状态中切出高通道系数, 并且信号可以压缩到低于最初的半幅度, 并预设性能预测。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
127+阅读 · 2021年6月4日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
183+阅读 · 2020年4月26日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
15+阅读 · 2020年2月5日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
15+阅读 · 2020年2月5日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员