We introduce an interactive Soft Shadow Network (SSN) to generates controllable soft shadows for image compositing. SSN takes a 2D object mask as input and thus is agnostic to image types such as painting and vector art. An environment light map is used to control the shadow's characteristics, such as angle and softness. SSN employs an Ambient Occlusion Prediction module to predict an intermediate ambient occlusion map, which can be further refined by the user to provides geometric cues to modulate the shadow generation. To train our model, we design an efficient pipeline to produce diverse soft shadow training data using 3D object models. In addition, we propose an inverse shadow map representation to improve model training. We demonstrate that our model produces realistic soft shadows in real-time. Our user studies show that the generated shadows are often indistinguishable from shadows calculated by a physics-based renderer and users can easily use SSN through an interactive application to generate specific shadow effects in minutes.
翻译:我们引入了一个互动软影阴影网络(SSN) 来生成可控的软阴影以用于图像合成。 SSN将一个 2D 对象遮罩作为输入, 因而对图像类型( 如绘画和矢量艺术) 具有不可知性。 使用环境光图来控制阴影的特性, 如角和软性。 SSN 使用一个“ 环境隐蔽预测” 模块来预测一个中间环境隐蔽图, 用户可以进一步完善该图, 以提供几何导线来调节阴影生成。 为了培训我们的模型, 我们设计了一个高效的管道, 以利用 3D 对象模型生成各种软影子培训数据。 此外, 我们提议了一个反向的阴影图示来改进模型培训。 我们展示了我们的模型在实时产生现实的软阴影。 我们的用户研究表明, 生成的阴影往往无法与基于物理的制造者所计算的阴影区分开来, 用户可以通过交互应用 SNSN 来在几分钟内产生具体的影子效果。