Adaptive optics scanning laser ophthalmoscopy (AOSLO) provides real-time retinal images with high resolution down to 2 $\mu m$. This technique enables detection of the morphologies of individual microaneurysms (MAs), which are one of the earliest signs of diabetic retinopathy (DR), a frequent complication of diabetes that can lead to visual impairment and blindness. In contrast to previous automatic models developed for MA detection on standard fundus photographs, currently there is no high throughput image protocol available for automatic analysis of AOSLO photographs. To address this urgency, we introduce AOSLO-net, a deep neural network framework with customized training policy, including preprocessing, data augmentation and transfer learning, to automatically segment MAs from AOSLO images. We evaluate the performance of AOSLO-net using 87 DR AOSLO images demonstrating very accurate MA detection and segmentation, leading to correct MA morphological classification, while outperforming the state-of-the-art both in accuracy and cost.
翻译:适应性光学扫描激光眼球镜(AOSLO)提供高分辨率至2美元穆美元的实时视网膜图像。这一技术能够探测出个别微神经系统(MAS)的形态,这是糖尿病视网膜病症(DR)的早期症状之一,糖尿病经常并发症可能导致视觉损伤和失明。与以前为MA在标准基底照片上探测而开发的自动模型相比,目前没有高吞吐图象协议可用于自动分析AOSLO照片。为了应对这一紧迫性,我们引入了带有定制培训政策的深层神经网络框架AOSLO网络,包括预处理、数据增强和传输学习。我们使用87 DR AOSLO图像评估AOS-net的性能,显示非常准确的MA探测和分解,导致对MA形态的分类,同时在准确性和成本方面都超过了最新技术。