We establish improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small electromagnetic potentials characterized by a dimensionless parameter $\varepsilon\in (0, 1]$ representing the amplitude of the potentials. We begin with a semi-discritization of the Dirac equation in time by a time-splitting method, and then followed by a full-discretization in space by the Fourier pseudospectral method. Employing the unitary flow property of the second-order time-splitting method for the Dirac equation, we prove uniform error bounds at $C(t)\tau^2$ and $C(t)(h^m+\tau^2)$ for the semi-discretization and full-discretization, respectively, for any time $t\in[0,T_\varepsilon]$ with $T_\varepsilon = T/\varepsilon$ for $T > 0$, which are uniformly for $\varepsilon \in (0, 1]$, where $\tau$ is the time step, $h$ is the mesh size, $m\geq 2$ depends on the regularity of the solution, and $C(t) = C_0 + C_1\varepsilon t\le C_0+C_1T$ grows at most linearly with respect to $t$ with $C_0\ge0$ and $C_1>0$ two constants independent of $t$, $h$, $\tau$ and $\varepsilon$. Then by adopting the regularity compensation oscillation (RCO) technique which controls the high frequency modes by the regularity of the solution and low frequency modes by phase cancellation and energy method, we establish improved uniform error bounds at $O(\varepsilon\tau^2)$ and $O(h^m +\varepsilon\tau^2)$ for the semi-discretization and full-discretization, respectively, up to the long-time $T_\varepsilon$. Numerical results are reported to confirm our error bounds and to demonstrate that they are sharp. Comparisons on the accuracy of different time discretizations for the Dirac equation are also provided.
翻译:我们为Dirac方程式的长期时间分解方法建立更好的统一错误约束。 使用二阶时间分解法的单流属性, 以无维度参数 $\varepsilon\ in (0, 1美元) 代表潜力的振幅。 我们从半分解Dirac方程式的半分解开始, 之后又用 Freyer 伪光谱法在空间中完全分解。 使用二阶时间分解法的单流属性, 用于Dirac方程式的小型电磁潜能, 我们证明, 以无维度参数 $( 0, 2美元) 和 美元( 美元) 代表半分解和完全分解, 以美元( 0, 1美元) 和 美元( 美元) 以平价法的平价, 以2美元 和 平价的平价 。