Lebesgue integration of derivatives of strongly-oscillatory functions is a recurring challenge in computational science and engineering. Integration by parts is an effective remedy for huge computational costs associated with Monte Carlo integration schemes. In case of Lebesgue integrals over a smooth manifold, however, integration by parts gives rise to a derivative of the density implied by charts describing the domain manifold. This paper focuses on the computation of that derivative, which we call the density gradient function, on general smooth manifolds. We analytically derive formulas for the density gradient and present examples of manifolds determined by popular differential equation-driven systems. We highlight the significance of the density gradient by demonstrating a numerical example of Monte Carlo integration involving oscillatory integrands.
翻译:在计算学和工程学中,重力流函数衍生物的整合是一个反复出现的挑战。按部分整合是弥补与蒙特卡洛一体化计划相关的巨大计算成本的有效办法。但是,在利贝斯格综合体在光滑的方块上,按部分整合会产生描述域数的图表所隐含的密度衍生物的衍生物。本文侧重于该衍生物的计算,我们称之为密度梯度函数,以一般光滑的方块为主。我们分析得出密度梯度公式,并举例说明由流行差异方程式驱动的系统决定的多个元件。我们通过展示一个涉及浮质的蒙特卡洛综合体的数字示例,突出密度梯度的重要性。