The Dagum family of isotropic covariance functions has two parameters that allow for decoupling of the fractal dimension and Hurst effect for Gaussian random fields that are stationary and isotropic over Euclidean spaces. Sufficient conditions that allow for positive definiteness in Rd of the Dagum family have been proposed on the basis of the fact that the Dagum family allows for complete monotonicity under some parameter restrictions. The spectral properties of the Dagum family have been inspected to a very limited extent only, and this paper gives insight into this direction. Specifically, we study finite and asymptotic properties of the isotropic spectral density (intended as the Hankel transform) of the Dagum model. Also, we establish some closed forms expressions for the Dagum spectral density in terms of the Fox{Wright functions. Finally, we provide asymptotic properties for such a class of spectral densities.
翻译:等离子共变函数的Dagum家族有两个参数,可以分离分形维度和对欧clidean空间上固定和异向的高斯随机场的赫斯特效应。根据Dagum家族在某些参数限制下允许完全单音性这一事实,提出了允许Dagum家族Rd确定积极性的适当条件。Dagum家族的光谱特性仅受到非常有限的检查,本文对此方向进行了深入了解。具体地说,我们研究Dagum模型(作为Hankel变形的)等地光谱密度的有限性和无症状特性。此外,我们还根据Fox{Wright]函数为Dagum光谱密度建立了某些封闭形式的表达方式。最后,我们为这种光谱密度的类别提供了一些隐性特性。