Causal discovery of genome-scale networks is important for identifying pathways from genes to observable traits - e.g. differences in cell function, disease, drug resistance and others. Causal learners based on graphical models rely on interventional samples to orient edges in the network. However, these models have not been shown to scale up the size of the genome, which are on the order of 1e3-1e4 genes. We introduce a new learner, SP-GIES, that jointly learns from interventional and observational datasets and achieves almost 4x speedup against an existing learner for 1,000 node networks. SP-GIES achieves an AUC-PR score of 0.91 on 1,000 node networks, and scales up to 2,000 node networks - this is 4x larger than existing works. We also show how SP-GIES improves downstream optimal experimental design strategies for selecting interventional experiments to perform on the system. This is an important step forward in realizing causal discovery at scale via autonomous experimental design.


翻译:因果发现基因组比例网络对于识别基因到可观察性状之间的途径是很重要的,例如细胞功能的差异,疾病,药物抗性等。基于图形模型的因果学习器依赖于干预样本来定向网络中的边。但是,这些模型尚未显示出扩大基因组尺寸的规模,基因组尺寸大约为1e3-1e4个基因。我们引入了一个新的学习器SP-GIES,该学习器同时从干预和观察数据集中学习,并对1000节点网络的现有学习器实现超过4倍的速度提升。 SP-GIES在1000节点网络上实现了0.91的AUC-PR分数,并且可以扩展到2000节点网络-这是现有作品的4倍大。我们还展示了SP-GIES如何改进下游最佳实验设计策略,以选择在系统上执行的干预实验。这是实现通过自主实验设计实现规模化的因果发现的重要步骤。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员